All you need to know to run your solver in probo, with
specific reference to ICCMA’15

Federico Cerutti Nir Oren Hannes Straf Matthias Thimm Mauro Vallati

Serena Villata

Rev. 5 — 18 November 2014

1 Introduction

This document describes the interfaces that a solver needs to export in order to be exe-
cuted by probo. For a description of probo and of the ICCMA’15 competition, the reader
is invited to study (Cerutti et al., 2014) and to regularly check the official website http:
//argumentationcompetition.org .

Knowledge of (Cerutti et al., 2014) is a prerequisite for this document.

ICCMA’15

',
™

Remark for the ICCMA’15 Competition
These boxes highlight what is necessary to know for the forth-
coming ICCMA’15 competition.

2 Terminology

In this document, we consider the following semantics (Baroni et al., 2011) for Dung’s argu-
mentation framework (Dung, 1995) supported by probo:

e conflict-freeness (hereafter CF);
e admissibility (hereafter ADM);
e complete (hereafter C0);

e grounded (hereafter GR);

e preferred (hereafter PR);

e stable (hereafter ST);

e stage (hereafter STG);

e semi-stable (hereafter SST);


http://argumentationcompetition.org
http://argumentationcompetition.org

e ideal (hereafter ID);

e CF2 (hereafter CF2).

',
S

ICCMA’15

Semantics considered in ICCMA’15
e complete (hereafter CO);

e grounded (hereafter GR);
e preferred (hereafter PR);

e stable (hereafter ST).

The problems supported by probo discussed in this document are:

e Decision problems:
1. Credulous acceptance (hereafter DC);

2. Skeptical acceptance (hereafter DS);

e Enumeration problems:
1. all the extensions (hereafter EE);
2. some extension (hereafter SE);
3. enumerate all the arguments that are credulously inferred (hereafter EC)!;
4

. enumerate all the arguments that are skeptically inferred (hereafter ES)!.

ICCMA’15

',
™

Problems considered in ICCMA’15
e Decision problems:

1. Credulous acceptance (hereafter DC);

2. Skeptical acceptance (hereafter DS);

e Enumeration problems:
1. all the extensions (hereafter EE);

2. some extension (hereafter SE).

probo supports the following three serialisations (see (Cerutti et al., 2014) for examples):

e Aspartix format (hereafter apx);

'For single-status semantics, this problem is equivalent to EE.



e CNF format (hereafter cnf);

e Trivial graph format (hereafter tgf).

ICCMA’15

',
™

File formats considered in ICCMA ’15
e Aspartix format (hereafter apx);

e CNF format (hereafter cnf);

e Trivial graph format (hereafter tgf).

3 Interfaces to probo: Reference Guide

probo interacts with each solver in two ways. First, it queries each solver’s capabilities in terms
of supported file types and problems. Secondly, it invokes the solver on a specific argumentation
framework for a specific purpose (problem).

Each solver must write — on the standard output — the answers to the invocation. There
are three types of answers:

1. YES or NO — for decision problems;

2. [el1, el2, el3] — list of elements (e.g. a list of arguments for credulous/skeptical
enumeration problems);

3. [[el1, el2, el13],[...1,...]1 — list of lists of elements (e.g. extensions enumeration);

3.1 Capabilities query

Each solver to be invoked by probo must export the following options for query purposes:

e when invoked without option, the solver must write author and version information to the
standard output;

e ——formats

when invoked with this parameter the solver must write the list of supported file types to
the standard output. Acceptable output are any sublists of:

[apx, cnf, tgf]

e —-problems

when invoked with this parameter the solver must write the list of supported problems to
the standard output. Acceptable output are any sublists of:

[DC-CF, DC-ADM, DC-CO, DC-GR, DC-PR, DC-ST, DC-STG, DC-SST, DC-ID, DC-CF2, DS-CF,
DS-ADM, DS-CO, DS-GR, DS-PR, DS-ST, DS-STG, DS-SST, DS-ID, DS-CF2, EC-CF, EC-ADM,
EC-CO, EC-GR, EC-PR, EC-ST, EC-STG, EC-SST, EC-ID, EC-CF2, ES-CF, ES-ADM, ES-CO,
ES-GR, ES-PR, ES-ST, ES-STG, ES-SST, ES-ID, ES-CF2, EE-CF, EE-ADM, EE-CO, EE-GR,



EE-PR, EE-ST, EE-STG, EE-SST, EE-ID, EE-CF2, SE-CF, SE-ADM, SE-STG, SE-SST,
SE-ID, SE-CF2, SE-CO, SE-GR, SE-PR, SE-ST]

Problems considered in ICCMA °15

[DC-CO, DC-GR, DC-PR, DC-ST, DS-CO, DS-GR, DS-PR,
DS-ST, EE-CO, EE-GR, EE-PR, EE-ST, SE-CO, SE-GR,
SE-PR, SE-ST]

.{)_
ICCMA’15

For example, if a solver supports credulous acceptance for com-
plete semantics and grounded semantics, and enumeration of sta-
ble extensions, the expected output is like

[DC-CO, DC-GR, EE-ST]
(the order in the list does not matter).

3.2 Query Problem’s Answer

Each solver to be invoked by probo must be able to parse and respond to the following options:
e -f filename — giving the input file name for a problem;
e —fo format — e.g. -f apx for specifying that filename is in Aspartix format;

e —p problem — e.g. -p DC-PR for specifying that the problem to be solved is the credulous
acceptance w.r.t. preferred semantics;

e -a additional — providing additional problem related information. E.g. -a al for
specifying that the argument to be checked for credulous acceptance is al.

The syntactically acceptable outputs depend on the type of problem:

e for decision problems, i.e. DC or DS:
valid output are either YES or NO ;

e for enumeration of some extension, enumeration of the arguments that are credulous-
ly /skeptically inferred, i.e. SE, EC or ES:

valid output is a list of arguments (e.g. [al, a2]);

e for extensions enumeration:

valid output is a list of lists of arguments (e.g. [[al,a2], [a3]]). Please note that this is
the case also for single status semantics. In the case no extension exists, the answer must
be an empty list [].

4 A tutorial

In this section, we describe, step-by-step, the procedure for allowing probo to invoke a generic
solver. For simplicity we consider ArgSemSATVv0.2 (http://sourceforge.net/projects/argsemsat/
) as the solver.


http://sourceforge.net/projects/argsemsat/

Since ArgSemSATVv0.2 does not export the interfaces requested by probo, we can create a bash
script acting as a proxy (Listing 1).

Listing 1: Bash Script for ArgSemSATv0.2

#!/bin/bash
solver="ArgSemSAT"

fileinput=""
problem=""
format=""

if [ ||$#|| = nQn ]

then
echo "ArgSemSATvO.2"
echo "Federico Cerutti <federico.cerutti@acm.org>"
echo "Mauro Vallati <mauro.vallati@hud.ac.uk>"

fi
While [ ||$1|| != nn ]; do
case $1 in
"--formats")
echo ’[apx]’
exit O
"--problems")
echo °’[EE-PR]’
exit O
l’l’_pll)
shift
problem=$1
:l,_fu)
shift
fileinput=3%1
I’l’_foll)
shift
format=%1
esac
shift
done
if [ "$format" = "apx" -a "$problem" = "EE-PR" 1];
then
res=$($(dirname $0)/$solver $fileinput -ExtSAT GLUCOSE -sem preferred-df)
echo -n "["
echo $res | sed ’s/{/[/g’ | sed ’s/}/1/g’ | tr -d ’\n’ | sed ’s/}{/},{/g’ |
sed ’s/\ /,/g’
echo n]n
fi

First of all, if the script is invoked without arguments (lines 8-13), then information regarding
version and authors is provided.

ArgSemSATVv0.2 can work on files in Aspartix format only, therefore the return value of the
proxy script when it is invoked with the parameter —-formats is [apx] (lines 17-20).



10
11
12
13
14
15

Then, since ArgSemSATv0.2 can be tested for performance purposes only on a specific prob-
lem, viz. the enumeration of preferred extensions, the return values of the proxy script when it
is invoked with the parameter ——-problems must be [EE-PR] (lines 21-24).

The bash script accepts the parameters -p (lines 24-28), -f (lines 29-32), and -fo (lines
33-36) storing accordingly the provided data.

Finally, if invoked on a EE-PR problem with a apx type file as input, at lines 41-48 the bash
script invokes the actual program ArgSemSAT (line 43) and it stores the result of the computation
in the variable res. Then, the output is formatted accordingly to probo’s requirements (line 46)
by simple string transformation and printed to the standard output.

If you want to test the result, download probo from http://sourceforge.net/projects/
probo/, add your solver and your bash script interface to the solvers/ directory, and add your
bash script to the list of solvers in the configuration file. For instance, this is a portion of the
configuration file listing two solvers, viz. Tweety and ArgSemSATv0.2:
solvers:

- solvers/tweetysolver-v1.0.8.sh
- solvers/argsemsatv0.2.sh

5 A Configurable Bash Script

As part of the probo distribution, the following bash script is also provided (Listing 2). It can
be customised by providing;:

1. a information procedure displaying author and version (lines 27-33);
2. a solver procedure which invokes the actual program (lines 36-64);

3. a parse_output procedure which parses the output of the actual program in order to
adhere to probo’s requests;

4. the list of accepted input type (lines 95-97, please comment the unsupported formats);

5. the list of accepted problems (lines 100-163, please comment the unsupported problems).

This bash script is provided for solvers’ developer convenience only, who are clearly free to
implement probo’s interface in other ways.

Listing 2: Generic Bash Script

#!/bin/bash

# (c)2014 Federico Cerutti <federico.cerutti@acm.org> --- MIT LICENCE

# Generic script interface to probo http://sourceforge.net/projects/probo/
# Please feel freet to customize it for your own solver

# function for echoing on standard error

echoerr ()

{
# to remove standard error echoing, please comment the following line
echo "$@" 1>&2;

}

HAHBAHAHRAHAHBHBAH AR B R ABRAHAHBHBABAB BB R B RA R AR AH BB RS RSB AR AR HHH
# CONVFIGURATTION


http://sourceforge.net/projects/probo/
http://sourceforge.net/projects/probo/

H O H HF H H O H

#

{

#

this script must be customized by defining:

1) procedure for printing author and version information of the solver

(function "information")

2) suitable procedures for invoking your solver (function "solver");

3) suitable procedures for parsing your solver’s output
(function "parse_output");
4) 1list of supported format (array "formats");

5) list of supported problems (array

output information
function information

# example for ArgSemSATvO0.2
echo "ArgSemSATv0.2"

echo "Federico Cerutti <federico.cerutti@acm.org>"
echo "Mauro Vallati <mauro.vallati@hud.ac.uk>"

how to invoke your solver:

function solver

{

A H H H O OH O O OH H

fileinput=$%1

# input file with correct path

"problems") .

this function must be customized

format=$2 # format of the input file (see below)

problem=$3 # problem to solve (see below)
additional=$4 # additional information, i.e. name of an argument
# dummy output
echoerr "input file: $fileinput"
echoerr "format: $format"
echoerr "problem: $problem"
echoerr "additional: $additional"
# example for ArgSemSATvO0.2
if [ "$format" = "apx" -a "$problem" = "EE-PR" ];
then
./$(dirname $0)/ArgSemSAT $fileinput -ExtSAT GLUCOSE -sem preferred-df
else
echoerr "unsupported format or problem"
exit 1
fi

how to parse the output of your solver in order to be compliant with probo:

this function must be customized

probo ac

cepts solutions of the form:

[argl,arg2,...,argN] for

[[argl,arg2,...

YES/NO

1. some extension enumeration (SE)
arguments credulously inferred (EC)

2. enum.
3. enum. arguments skeptically inferred (ES)
,argN] ,[...1,...] for extension(s) enumeration

for decision problems

unction parse_output



ot

=2}

o

IS B BN N |

®
o ©

81
82
83
84
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

112

113

114

116

117

118
119
120
121
122
123
124
125

problem=$1
output="$2"

echoerr "original output: $output"

#example of parsing for ArgSemSATv0.2, which returns "{argl,arg2,...}\n{...}\
Moool

if [ "$problem" = "EE-PR" ];

then

echo -n "["

echo $output | sed
| sed ’s/}{/}.{/g’

echo u] "
else

’s/{/[/g’ | sed ’s/}/1/g’ | tr -4 ’\n’ \

| sed ’s/\ /,/g’

echoerr "unsupported format or problem"

exit 1
fi

# accepted formats: please comment those unsupported
formats [1]="apx" # "aspartix" format

formats [2]="cnf" # conjunctive normal form

formats [3]="tgf" # trivial graph format

# problems that can be accepted: please comment those unsupported

#|
problems [1]="DC-CO"
problems [2]="DC-GR"
problems [3]="DC-PR"
problems [4]="DC-ST"
problems [6]="DS-CO0"
problems [6]="DS-GR"
problems [7]="DS-PR"
problems [8]="DS-ST"
problems [9]="EE-CO"
semantics
problems [10]="EE-GR"
semantics
problems [11]="EE-PR"
semantics
problems [12]="EE-ST"
semantics
problems [13]="SE-CO"
semantics
problems [14]="SE-GR"
semantics
problems [16]="SE-PR"
semantics
problems [16]="SE-ST"
#|

#| E N D 0 F IC

problems [17]="DC-ADM"
problems [18]="DC-CF2"
problems [19]="DC-CF"

H H H HF B OH HE

Decide credulously according to Complete semantics
Decide credulously according to Grounded semantics
Decide credulously according to Preferred semantics
Decide credulously according to Stable semantics

Decide skeptically according to Complete semantics
Decide skeptically according to Grounded semantics
Decide skeptically according to Preferred semantics
Decide skeptically according to Stable semantics

Enumerate all the extensions according to Complete

Enumerate all the extensions according to Grounded
Enumerate all the extensions according to Preferred
Enumerate all the extensions according to Stable
Enumerate some extension according to Complete
Enumerate some extension according to Grounded
Enumerate some extension according to Preferred
Enumerate some extension according to Stable semantics

|
M A ’1 5 LIST 0 F PROBLEMS |

# Decide credulously according to admissiblity
# Decide credulously according to CF2 semantics
Decide credulously according to conflict-freeness



126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

problems [20]="DC-ID"

problems [21]="DC-SST"
problems [22]="DC-STG"
problems [23]="DS-ADM"
problems [24]="DS-CF2"
problems [25]="DS-CF"

problems [26]="DS-ID"

problems [27]="DS-SST"
problems [28]="DS-STG"
problems [29]="EC-ADM"

# Decide credulously according to Ideal semantics
# Decide credulously according to Semi-stable semantics
# Decide credulously according to Stage semantics
# Decide skeptically according to admissiblity
# Decide skeptically according to CF2 semantics
# Decide skeptically according to conflict-freemness
# Decide skeptically according to Ideal semantics
# Decide skeptically according to Semi-stable semantics
# Decide skeptically according to Stage semantics
# Enumerate all the arguments credulously inferred

according to admissiblity

problems [30]="EC-CF2"

# Enumerate all the arguments credulously inferred

according to CF2 semantics

problems [31]="EC-CF"

# Enumerate all the arguments credulously inferred

according to conflict-freeness
problems [32]="EC-CO0" # Enumerate all
according to Complete semantics
problems [33]="EC-GR" # Enumerate all
according to Grounded semantics
problems [34]="EC-ID" # Enumerate all
according to Ideal semantics

the arguments

the arguments

the arguments

credulously
credulously

credulously

inferred

inferred

inferred

inferred

problems [35]="EC-PR"

# Enumerate all the arguments credulously

according to Preferred semantics

problems [36]="EC-SST"

# Enumerate all the arguments credulously inferred

according to Semi-stable semantics

problems [37]="EC-STG"

# Enumerate all the arguments credulously inferred

according to Stage semantics

problems [38]="EC-ST"

# Enumerate all the arguments credulously inferred

according to Stable semantics

problems [39]="EE-ADM"

# Enumerate all the extensions according to

admissiblity
problems [40]="EE-CF2"
semantics
problems [41]="EE-CF"
freeness
problems [42]="EE-ID"
semantics
problems [43]="EE-SST"
semantics
problems [44]="EE-STG"
semantics
problems [45]="ES-ADM"
according to admissiblity
problems [46]="ES-CF2"
according to CF2 semantics
problems [47]="ES-CF" # Enumerate all
according to conflict-freeness
problems [48]="ES-CO0" # Enumerate all
according to Complete semantics
problems [49]="ES-GR" # Enumerate all
according to Grounded semantics
problems [60]="ES-ID" # Enumerate all
according to Ideal semantics
problems [61]="ES-PR" # Enumerate all
according to Preferred semantics

# Enumerate all

# Enumerate all

# Enumerate all the

# Enumerate all the

# Enumerate all the

# Enumerate all the

# Enumerate all the extensions according to CF2

the extensions according to conflict-

the extensions according to Ideal
extensions according to Semi-stable
extensions according to Stage
arguments skeptically inferred
arguments skeptically inferred
inferred

the arguments skeptically

the arguments skeptically inferred

the arguments skeptically inferred

the arguments skeptically inferred

the arguments skeptically inferred

problems [62]="ES-SST"

# Enumerate all the arguments skeptically inferred

according to Semi-stable semantics
problems [63]="ES-STG" # Enumerate all the arguments skeptically inferred
according to Stage semantics



160

161
162
163
164

165

166

167

168

169

171

216

problems [64]="ES-ST" # Enumerate all the arguments skeptically inferred
according to Stable semantics

problems [65]="SE-ADM" # Enumerate some extension according to admissiblity
problems [66]="SE-CF2" # Enumerate some extension according to CF2 semantics
problems [67]="SE-CF" # Enumerate some extension according to conflict-freeness
problems [68]="SE-ID" # Enumerate some extension according to Ideal semantics
problems [69]="SE-SST" # Enumerate some extension according to Semi-stable
semantics
problems [60]="SE-STG" # Enumerate some extension according to Stage semantics
# END 0 F CONFIGURATTION SECTTION

HHRAHHHARBHBABHBAAH BB RS A BAAHHRA R BB AR AR BAA R B AR R R BASH B R RSB R AR SR ERSH

function list_output
{
declare -a arr=("${!1}")
check_something_printed=false
echo -n [’
for i in ${arr[e@]};
do
if [ "$check_something_printed" = true ];
then
echo -n ", "
fi
echo -n $i
check_something_printed=true
done
echo ’]°

function main
{
if [ "g#" = "o ]
then
information
exit O
fi

local local_problem=""
local local_fileinput=""
local local_format=""
local local_additional=""

while [ "$1" = "" ]: do
case $1 in
"--formats")
list_output formats[@]
exit O
"--problems")
list_output problems [@]
exit O
T ll_pll)
shift
local_problem=§1
T’ "—f")
shift

10



local_fileinput=$1
T "—fO")

shift
local_format=$1

o)
shift
local_additional=$1
esac
shift
done

res=$(solver $local_fileinput $local_format $local_problem $local_additional)

parse_output $local_problem "$res"

}

main $@
exit O

References

Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An introduction to argumenta-
tion semantics. The Knowledge Engineering Review, 26(4):365-410, 2011.

Federico Cerutti, Nir Oren, Hannes Strass, Matthias Thimm, and Mauro Vallati. The First
International Competition on Computational Models of Argumentation (ICCMA’15) — Sup-
plementary Notes on probo. http://sourceforge.net/p/probo/code/HEAD/tree/trunk/
doc/, 2014.

P. M. Dung. On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic
Reasoning, Logic Programming and n-Person Games. Artificial Intelligence, 77(2):321-358,
1995.

11


http://sourceforge.net/p/probo/code/HEAD/tree/trunk/doc/
http://sourceforge.net/p/probo/code/HEAD/tree/trunk/doc/

	Introduction
	Terminology
	Interfaces to probo: Reference Guide
	Capabilities query
	Query Problem's Answer

	A tutorial
	A Configurable Bash Script

