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Abstract. We present ArgTools, a system for reasoning with abstract
argumentation frameworks. The system solves a number of argumenta-
tion problems under preferred, stable, complete and grounded semantics.
ArgTools is a C++ implementation of a backtracking algorithm.
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1 Introduction

Abstract argumentation frameworks (afs), introduced in [4], are an important
model of automated reasoning [2]. An af is a pair (A,R) where A is a set of ab-
stract arguments and R ⊆ A×A is a binary relation. Argumentation semantics
are concerned with defining the acceptable arguments in a given af. There are
a number of semantics for different motivations, see [1] for an overview. Several
problems related to argumentation semantics are computationally hard [5]. Al-
gorithms for solving these problems can be either direct or indirect [3]. Indirect
approaches are reduction-based methods such that the problem at hand is trans-
lated to another form to be solved by an off-the-shelf system. Direct approaches
are dedicated algorithms that search for a solution to the input af. In this pa-
per we present ArgTools (short for Argumentation Tools), a system based on
backtracking algorithms for solving problems under preferred, stable, complete

and grounded semantics. In section 2 we give the definition of these semantics
and specify the problems solved by ArgTools. Then, in section 3 we discuss the
underlying approach of ArgTools. Lastly, in section 4 we conclude the paper.

2 Problems solved by ArgTools

We recall the definition of afs, originally introduced in [4]. An argumentation

framework (or af) is a pair (A,R) where A is a set of arguments and R ⊆ A×A
is a binary relation, see figure 1 for an example af. We refer to (x, y) ∈ R as
x attacks y (or y is attacked by x). We denote by {x}− respectively {x}+ the
subset of A containing those arguments that attack (resp. are attacked by) the
argument x.
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Fig. 1. An af, as a directed graph, with A = {a, b, c} and R = {(a, b), (b, c), (c, b)}.

Given a subset S ⊆ A, then

– x ∈ A is acceptable w.r.t. S if and only if for every (y, x) ∈ R, there is some
z ∈ S for which (z, y) ∈ R.

– S is conflict free if and only if for each (x, y) ∈ S × S, (x, y) /∈ R.
– S is admissible if and only if it is conflict free and every x ∈ S is acceptable

w.r.t. S.
– S is a preferred extension if and only if it is a ⊆-maximal admissible set.
– S is a stable extension if and only if it is conflict free and for each x /∈ S

there is y ∈ S such that (y, x) ∈ R.
– S is a complete extension if and only if it is an admissible set such that for

each x acceptable w.r.t. S, x ∈ S.
– S is the grounded extension if and only if it is the ⊆-least complete extension.

ArgTools solves problems under preferred, stable, complete and grounded
semantics. The problems are:

– Given an af H = (A,R), ArgTools enumerates all extensions of H.
– Given an af H = (A,R), ArgTools finds an extension of H.
– Given an af H = (A,R) and an argument a ∈ A, ArgTools decides whether

a is in some extension of H.
– Given an af H = (A,R) and an argument a ∈ A, ArgTools decides whether

a is in all extensions of H.

3 The approach of ArgTools

To give an idea about the approach of ArgTools we present algorithm 1 that
enumerates all preferred extensions of a given af. The algorithm is a backtrack-
ing procedure that traverses an abstract binary search tree. A core notion of the
algorithm is related to the use of five labels: IN, OUT, MUST OUT, BLANK
and UNDEC. Informally, the IN label identifies arguments that might be in a
preferred extension. The OUT label identifies an argument that is attacked by
an IN argument. The BLANK label is for any unprocessed argument whose final
label is not decided yet. The MUST OUT label identifies arguments that attack
IN arguments. The UNDEC label designates arguments which might not be in-
cluded in a preferred extension because they might not be defended by any IN
argument. To enumerate all preferred extensions algorithm 1 starts with BLANK
as the default label for all arguments. This initial state represents the root node
of the search tree. Then the algorithm forks to a left (resp. right) child (i.e. state)



ArgTools: a backtracking-based solver for abstract argumentation 3

by picking an argument, that is BLANK, to be labeled IN (resp. UNDEC). Every
time an argument, say x, is labeled IN some of the neighbour arguments’ labels
might change such that for every y ∈ {x}+ the label of y becomes OUT and for
every z ∈ {x}− \ {x}+ the label of z becomes MUST OUT. This process, i.e.
forking to new children, continues until there is no argument with the BLANK
label. At this point, the algorithm captures the set S = {x | the label of x is IN}
as a preferred extension if and only if there is no argument with the MUST OUT
label and S is not a subset of a previously found preferred extension (if such ex-
ists). Then the algorithm backtracks to find all preferred extensions. Figure 2
shows how algorithm 1 lists the preferred extensions of the af of figure 1.

Algorithm 1: Enumerating all preferred extensions of an af H = (A,R).

1 Lab : A→ {IN,OUT,BLANK,MUST OUT,UNDEC}; Lab← ∅;
2 foreach x ∈ A do Lab← Lab ∪ {(x,BLANK)};
3 foreach (x, x) ∈ R do Lab(x)← UNDEC;

4 E ⊆ 2A; E ← ∅;
5 call build-preferred-extensions(Lab);
6 report E is the set of all preferred extensions;

7 procedure build-preferred-extensions(Lab)
8 if ∄x with Lab(x) = BLANK then

9 if ∄x with Lab(x) = MUST OUT then

10 S ← {y | Lab(y) = IN};
11 if ∀T ∈ E S * T then E ← E ∪ {S};

12 else

13 select any x with Lab(x) = BLANK;
14 Lab′ ← Lab; Lab′(x)← IN ;
15 foreach y ∈ {x}+ do Lab′(y)← OUT ;
16 foreach y ∈ {x}− \ {x}+ do Lab′(y)←MUST OUT ;
17 call build-preferred-extensions(Lab′);
18 Lab′ ← Lab; Lab′(x) ← UNDEC;
19 call build-preferred-extensions(Lab′);

20 end procedure

4 Conclusion

ArgTools has been coded in the C++ language; the source code and the usage are
available at http://sourceforge.net/projects/argtools/. For space limita-
tion we did not discuss (in full detail) the underlying algorithms of ArgTools;
for the full presentation of the algorithms we refer the reader to [7, 6]. However,
ArgTools incorporates new enhancements that we plan to present in future in
an extended article.
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Fig. 2. Listing the preferred extensions of an af using algorithm 1.
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