GRIS: Computing traditional argumentation
semantics through numerical iterations.

Odinaldo Rodrigues

Department of Informatics,
King’s College London,
The Strand, London, WC2R 2LS, UK
odinaldo.rodrigues@kcl.ac.uk

Abstract. This paper provides an outline of the Gabbay-Rodrigues Iter-
ative Solver (GRIS). The solver can be used in decision and enumeration
problems of the grounded and preferred semantics.

1 Introduction

The Gabbay-Rodrigues Iterative Solver (GRIS) is implemented in C++ and uses
the Gabbay-Rodrigues Iteration Schema (see below) in the computation of the
solution to the following classes of problems. Given an argumentation network
(S, R): to produce one or all of the extensions of the network under the grounded
and preferred semantics; and given an argument X € S to decide whether X
is accepted credulously or sceptically according to one of these two semantics.
Problems to GRIS must be submitted according to probo’s syntax (see [2]).

GRIS is not currently able to handle the complete and stable semantics al-
though their implementation would not pose any additional technical difficulties
on top of what is already available.

2 Theoretical underpinnings

GRIS works with numerical argumentation networks where arguments are given
initial values from [0, 1] from which equilibrium values are calculated iteratively
yielding traditional extensions via the following correspondence.

Definition 1 (Caminada/Gabbay-Rodrigues Translation). A labelling
function A and a valuation function V can be inter-defined by identifying the
value 1 with the label in, the value 0 with the label out and assigning any node
with a value in (0, 1) with the label und and assigning a node with the label und
with a suitable value in (0,1), e.g., 0.5.

The Gabbay-Rodrigues Iteration Schema. Let (S, R) be an argumentation
network and Vp be an initial assignment of values from [0, 1] to the nodes in S.
Let for each X € S, MA;(X) = maxycaux){Vi(Y)} and the equation below
define the value of X at the subsequent iterations (i.e., Vi, Va,...):

Vit (X) = (1-V5(X))-min {; 1- MAZ-(X)}—&-V;(X)-max {;1 - MAZ-(X)}



2 O. Rodrigues

The set of all such equations constitutes the argumentation network’s GR system
of equations [3]. For each X € S, the sequence of values V5 (X), V1(X), ..., etc,
converges and the value V. (X) = lim;, Vi(X) is defined as the equilibrium
value of the node X. For any assignment (resp., labelling function) f, let in(f) =
{X e dom f | f(X) =1 (resp., in)} and out(f) = {X € dom f | f(X) =
0 (resp., out)}. Caminada and Pigozzi have shown that any labelling function A
for an argumentation framework (S, R) can be turned into an admissible labelling
function Ay, via a sequence of contraction operations that successively turn
nodes illegally labelled in or out by A into und. Furthermore, each admissible
labelling function Ay, can be turned into a complete labelling A\’ by a sequence
of expansion operations that successively turn nodes illegally labelled und by
Ade Into in or out as appropriate. Since an expansion sequence stops when no
und nodes remain illegally labelled, it follows that A\’ is the minimal complete
labelling such that in(Age) C in(N\) and out(Age) C out(N) [1].

The Gabbay-Rodrigues Iteration Schema defined according to the equation
above produces an equivalent result in a numerical context, except that no con-
tractions or expansions are needed and the labelling A’ can be obtained from the
equilibrium values of the sequences (see [3] for details). A labelling function A
such that for all X € S, A\(X) = und is, by definition, admissible, since it does
not label any nodes in or out. When an expansion sequence is then applied to
A resulting in the labelling function M,! as a result ) will correspond to the
smallest complete labelling for (S, R). The set in(\) = {X € S| N(X) = in}
will then correspond to the grounded extension of (S, R). In the numerical case,
all we have to do is to assign all nodes with a initial value V4 in (0,1) (we use
0.5); compute their equilibrium values; and then define the grounded extension
of (S, R) as the set of nodes with equilibrium value 1.

The above ideas constitute the basis of the GR Grounder module (see Fig. 1).
In addition, the grounder can also be applied to a subnetwork of particular inter-
est with optional given “conditioning” values during the course of a computation.
The conditioning values are calculated in a previous step, and hence fixed, and
simply fed into the equations. This allows the result of an individual strongly
connected component (SCC) of the network to be computed provided the values
of all of its conditioning nodes are known. Since non-trivial SCCs in a given layer
are independent of each other, the computation of the results within a layer can
potentially be done in parallel (a possible enhancement to the solver). Results
of the SCCs are then carefully combined to provide answers to the decision and
enumeration problems with respect to the required semantics.

One question of interest is of course how to determine the equilibrium values
in a finite number of computations. This is done by approzimation. Corollary 2.38
in [3] shows that all values converge to one of the values in {0, 1, 1}. The grounder
stops iterating as soon as the maximum variation in node values between two
successive iterations is smaller than or equal to the upper bound of the relative
error introduced due to rounding in the calculations of the target machine. In

! Caminada and Pigozzi have shown that the set of complete labellings that are “bigger
or equal” to a given labelling function has a unique smallest element [1, Theorem 11].



Gabbay-Rodrigues Iterative Solver — System Description 3

our 64-bit computer, this is 1079, It is envisaged that the computation may
be stopped much earlier if we can safely detect the convergence of all nodes to
one of the values in {0, %, 1}. As it turns out, this is not the main bottleneck
in the computation, as grounding can be computed relatively quickly even for
larger networks. The computational complexitity (and GRIS’ current inability to
complete the calculation of solutions for some classes of problems) mainly arises
because of the management of multiple candidate assignments, which increase
in proportion to the number and size of the SCCs and the number of network
layers. This aspect of GRIS can be improved in a number of different ways.

3 System Overview

GRIS initially reads the problem specification passed as command line argu-
ments, validates it and then validates the input network, exiting in case of error.

The basic workflow for the computations involving the grounded and pre-
ferred semantics is depicted in Fig. 1, with the exception that in the grounded
semantics, intermediate preferred solutions do not need to be generated and so
the preferred solutions generator and partial preferred solutions datastore are
not used. The solver starts by computing the strongly connected components
of the network using a specially modified version of Tarjan’s algorithm [6] and
arranging them into layers that can be used in successive computation steps
as described in [4]. Once the layers are computed, the solver can identify the
deepest layer level of computation needed according to the layer depth of the
input argument and this can be used to terminate the computation of decision
problems as early as possible.

For the computation of the solutions to the problems in the grounded seman-
tics, the decomposition into layers is not strictly necessary. The GR Grounder
can in principle be applied to the entire network at once and the nodes with
equilibrium value 1 will correspond to the grounded extension of the entire net-
work. However, since the computation of the SCCs and their arrangement into
layers can be performed very efficiently with our version of the algorithms, this
extra cost is offset by gains obtained through the computation by layers in all
but a few special cases. Our strategy is then to feed the result of each layer into
the next layer’s computation until either all layers are computed or we reach
the maximum depth needed to establish the membership (or not) of the argu-
ment in the grounded extension (this strategy proves particularly efficient if the
argument belongs to a layer of low depth).

Preferred Semantics. The solution of problems involving the preferred seman-
tics involves the computation of partial network solutions to each layer. The key
point in GRIS is that once the grounder is invoked for a particular SCC (using
all required conditioning values), the resulting equilibrium values may contain
undecided values, some of which could potentially be assigned the value 1 in
a preferred extension. So our (naive) implementation assigns the value 1 to all
such nodes and then corrects illegal values in a manner similar to that of the
Modgil and Caminada’s labelling-based algorithms [5]. The results of every can-
didate solution are then propagated to the next layer using the grounder again



4 O. Rodrigues

and the whole process repeats. There is ample scope for optimisation here since
undecided nodes that are attacked by a conditioning undecided argument can-
not possibly be in in any extension. Furthermore, in decision problems, a careful
analysis of the argument involved may identify partial solutions of particular
interest without the need to generate all partial solutions (the blind generation
of partial solutions can quickly exhaust resources).

Solutions to the problems in the complete and stable semantics may also be
computed with appropriate modifications, but these mechanisms have not been
implemented in this version of the solver.

input problem

/
7

problem specification

input graph file valid graph Tarjan

> ® > R
/ graph U Layering
/

Preferred
solutions
generator

argument base solutions layer

GR Grounder

Layers
SCCs —

1

|

| .

\ undecided nodes

! partial

solutions/
/

\
partial solutions

\ ! Partial previous layer

! y
\ preferred solution; |

' . no more layers
N solutions ,
—
v : . // base
A | partial preferred solution, 7 ¢o|utions
-

-

Acceptability
checker

-7 result
>€ Yes/No ’

Fig. 1. Basic workflow of the preferred semantics calculator.

Obtaining GRIS: http://www.inf.kcl.ac.uk/staff/odinaldo/gris
References

1. M. Caminada and G. Pigozzi. On judgment aggregation in abstract argumentation.
Autonomous Agents and Multi-Agent Systems, 22(1):64-102, 2011.

2. F. Cerutti, N. Oren, H. Strasse, M. Thimm, and M. Vallati. The first interna-
tional competition on computational models of argumentation (ICCMA15). http:
//argumentationcompetition.org/2015/index.html, 2015.

3. D. M. Gabbay and O. Rodrigues. Equilibrium states in numerical argumentation

networks. Logica Universalis, pages 1-63, 2015.

B. Liao. Efficient Computation of Argumentation Semantics. Elsevier, 2014.

S. Modgil and M. Caminada. Proof theories and algorithms for abstract argumen-

tation frameworks. In Guillermo Simari and Iyad Rahwan, editors, Argumentation

in Artificial Intelligence, pages 105—129. Springer US, 2009.

6. R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1:146-160, 1972.

G



