
Dungell: A reference implementation of Dung’s
argumentation frameworks in Haskell

Bas van Gijzel

Functional Programming Lab
University of Nottingham

bmv@cs.nott.ac.uk

Abstract. This paper describes Dungell, an open source Haskell im-
plementation of Dung’s argumentation frameworks capable of solving
decision and enumeration problems for grounded, complete, preferred,
stable and semi-stable semantics. The Dungell application and its ac-
companying library provide an implementation that is closely aligned to
the mathematical definitions, serving as a specification in its own right.

1 Introduction

The Dungell application and its accompanying library provide a Haskell imple-
mentation of Dung’s argumentation frameworks [2]. The library supplies im-
plementations for the standard definitions and semantics, including grounded,
complete, preferred and stable semantics, but also conflict-freeness, admissibility
and various others.

In addition to Dung’s definitions, the implementation also provides imple-
mentations for the definitions and algorithms of the labelling approach to ar-
gumentation [1]. In particular, the library implements labelling algorithms and
definitions for Dung’s four semantics and the semi-stable semantics.

2 Design philosophy

There are various other efficient solvers that exist for AFs, which are most likely
faster than Dungell. Instead, the approach taken in the implementation of Dun-
gell, is to provide an implementation that is as clear and close to the mathemat-
ical definitions as possible. The main reasons this approach is taken, is that:

– the library becomes intuitive, reproducible and easier to verify;
– the implemented definitions can more easily be converted to and proven

correct in a theorem prover;
– the library can be used as a translation target.

The library also provides output formats readable by the current fastest
implementations.

The combination of these features is intended to allow implementers of struc-
tured argumentation models to use Dungell to implement a translation from a
structured model into Dungell, possibly performing formal verification as well.
Further details of the implementation and the general design can be found in
previous papers [3, 4, 5, 6].

3 Implementation of the enumeration of complete and
preferred extensions

This section gives an illustration of the approach taken in Dungell by demon-
strating how the enumeration of complete and preferred extensions are imple-
mented in (a slightly stylised version of) Haskell. The code in this section is
almost self-contained1.

An abstract argumentation framework consists of a set of arguments and a
binary relation on these arguments, representing attack. The Haskell counterpart
of this definition takes the form of an algebraic data type:

data DungAF arg = AF [arg] [(arg , arg)]

Note how this essentially is a transliteration of the mathematical definition, even
if lists are used in place of sets. Additionally, the definition is parametrised on
the type of argument, arg.

A //B //C

Fig. 1. An (abstract) argumentation framework

Given an argumentation framework using labels as the type of abstract argument
we can represent this in Haskell using Strings.

type AbsArg = String

a, b, c :: AbsArg
a = "A"; b = "B"; c = "C"

AF1 :: DungAF AbsArg
AF1 = AF [a, b, c] [(a, b), (b, c)]

Haskell can define functions by pattern matching on the shape of an algebraic
data type, splitting the definition into multiple lines for each type of shape. For
example, the powerset function on lists, can be recursively defined as follows:

powerset :: [a]→ [[a]]
powerset [] = [[]]
powerset (x : xs) = powerset xs ++ map (x :) (powerset xs)

1 The complete source code of this section can be run by the Haskell compiler and can
be downloaded at: http://www.cs.nott.ac.uk/~bmv/Code/dungell_iccma.lhs.

http://www.cs.nott.ac.uk/~bmv/Code/dungell_iccma.lhs

Given an argumentation framework for which we can check whether arguments
are equal (Eq arg), it is possible to verifiy whether a list of arguments is conflict-
free by checking that the list of attacks between those arguments is empty by
using null .

conflictFree :: Eq arg ⇒ DungAF arg → [arg]→ Bool
conflictFree (AF def) args

= null [(a, b) | (a, b)← def , a ∈ args, b ∈ args]

Acceptability of an argument w.r.t. a set of arguments in an AF can be deter-
mined by verifying that all its attackers are in return attacked by an attacker in
that set. The call setAttacks af args b returns True if any argument in the set
args attacks the argument b; the and function below is being equivalent to

∧
.

acceptable :: Eq arg ⇒ DungAF arg → arg → [arg]→ Bool
acceptable af @(AF def) a args

= and [setAttacks af args b | (b, a ′)← def , a ≡ a ′]

The characteristic function of an argumentation framework, calculates the set
of arguments acceptable w.r.t. a given set of arguments. Admissibility of a set
of arguments is then determined by verifying that the set is conflict-free and a
subset of the characteristic function applied to that set. The Ord arg requires the
argument type to be comparable, implying the existence of an equality (Eq arg)
between arguments.

f :: Eq arg ⇒ DungAF arg → [arg]→ [arg]
f af @(AF args ′) args = [a | a ← args ′, acceptable af a args]

admissible :: Ord arg ⇒ DungAF arg → [arg]→ Bool
admissible af args = conflictFree af args ∧ args ⊆ f af args

Given an argumentation framework, the set of complete extensions can be cal-
culated by taking all sets of arguments of the powerset of arguments of that AF,
given that they are admissible and fAF x ≡ x .

completeF :: Ord arg ⇒ DungAF arg → [[arg]]
completeF af @(AF args) =
let fAF = f af
in filter (λx → admissible af x ∧ fAF x ≡ x) (powerset args)

Finally, the set of preferred extensions can be obtained by applying an appropri-
ate filter on the complete extension, i.e. a complete extension is also a preferred
extension if it is not a subset of one the other complete extensions.

isPreferredExt :: Ord arg ⇒ DungAF arg → [[arg]]→ [arg]→ Bool
isPreferredExt af exts ext = all (¬ ◦ (ext ⊆)) (delete ext exts)

preferredF :: Ord arg ⇒ DungAF arg → [[arg]]
preferredF af @(AF args) =

let cs = completeF af
in filter (isPreferredExt af cs) cs

4 Installation and usage instructions

The source code of the Dungell application is available under an open source
license (BSD3). It can be downloaded and installed:

– as a bundled zip file, including external libraries at: http://www.cs.nott.
ac.uk/~bmv/Code/dungell_bundled.zip;

– or as a Haskell library at: https://github.com/nebasuke/DungICCMA.

The user is required to install a recent Haskell distribution (GHC 7.8.4 or
higher for the bundled zip file). After downloading the source files the the Dungell
executable can be compiled by using cabal install in the toplevel directory
containing the Dungell.cabal file. Detailed usage and installation instructions
can be found at: www.cs.nott.ac.uk/~bmv/DungICCMA/.

Acknowledgements

I would like to thank Tom Gordon for his feedback during the development of
the implementation.

References

[1] Martin Caminada. An algorithm for computing semi-stable semantics. In Sym-
bolic and Quantitative Approaches to Reasoning with Uncertainty, pages 222–234.
Springer, 2007.

[2] Phan Minh Dung. On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games. Artificial
Intelligence, 77(2):321–357, 1995.

[3] Bas van Gijzel. Tools for the implementation of argumentation models. In An-
drew V. Jones and Nicholas Ng, editors, 2013 Imperial College Computing Student
Workshop, volume 35 of OpenAccess Series in Informatics (OASIcs), pages 43–48,
Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[4] Bas van Gijzel and Henrik Nilsson. Haskell gets argumentative. In Proceedings of
the Symposium on Trends in Functional Programming (TFP 2012), LNCS 7829,
pages 215–230, St Andrews, UK, 2013. LNCS.

[5] Bas van Gijzel and Henrik Nilsson. A principled approach to the implementation
of argumentation models. In Proceedings of the Fifth International Conference on
Computational Models of Argument (COMMA 2014), pages 293–300. IOS Press,
2014.

[6] Bas van Gijzel and Henrik Nilsson. Towards a framework for the implementation
and verification of translations between argumentation models. In Proceedings of
the 25th Symposium on Implementation and Application of Functional Languages,
IFL ’13, pages 93:93–93:103, New York, NY, USA, 2014. ACM.

http://www.cs.nott.ac.uk/~bmv/Code/dungell_bundled.zip
http://www.cs.nott.ac.uk/~bmv/Code/dungell_bundled.zip
https://github.com/nebasuke/DungICCMA
www.cs.nott.ac.uk/~bmv/DungICCMA/

	Dungell: A reference implementation of Dung's argumentation frameworks in Haskell

