
ASSA: Computing Stable Extensions with
Matrices

Evgenios Hadjisoteriou and Michael Georgiou

Department of Computer Science, University of Cyprus
75 Kallipoleos Str., 1678 Nicosia, Cyprus

csp7he2@cs.ucy.ac.cy

http://www.cs.ucy.ac.cy/

Department of Electrical Engineering, Computer Engineering and Informatics,
Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Lemesos,

Cyprus
mica.georgiou@cut.ac.cy,

https://www.cut.ac.cy/eecei/

Abstract. Abstract argumentation frameworks with countably many
arguments can be presented in a matrix form. We have created reason-
ing tasks based on matrix operations, that can answer whether a given set
of arguments is part of an argumentation extension. Our solver, ASSA,
is written in Java and implements the stable semantics of an argumenta-
tion framework, giving us the opportunity to participate in ICCMA’15
competition.

Keywords: Argumentation, semantics, stable extension, matrix

1 The Project

Argumentation theory tries to mimic the process of reasoning. It is often used by
agents to reason under dynamic environments, e.g. which alternative to choose.
Agents perform tasks under incomplete information, thus decisions must be pre-
cise and easily computable. Agents need a tool that is able to produce extensions
under specific semantics to help them decide what their next move should be.

For what follows, we assume that the reader is familiar to basic matrix tools
and operations [5] as well as the fundamentals on argumentation frameworks [2,
1, 3]. We have created a theory on how to use mathematical matrix operations,
to navigate through argumentation frameworks. We then used this method to
compute extensions in an abstract argumentation framework.

The computational complexity for multiplying two matrices with n digit
numbers using the “default” algorithm is O(n3) [6]. Of course there are methods
that can optimize this result [6, 4]. Because of this complexity our algorithm can
handle argumentation frameworks with not many arguments. First we present
any abstract argumentation framework into its adjacency matrix.

Definition 1. Let AF = 〈A,R〉 be an argumentation framework. Define its

adjacency matrix A = (ai,j) as follows: ai,j =

{
1 if (i, j) ∈ R
0 if (i, j) /∈ R



2 ASSA: Computing Stable Extensions with Matrices

It is important to know who attacks who. The “tail” of an outgoing attack
is represented by the row of the adjacency matrix and each column represents
the “tip” of the attack. Therefore, element a3,4 can represent the attacks from
arguments a3 to argument a4 while element a4,3 can represent the attacks from
a4 to a3.

We then represent any given set of arguments as a column vector. Having
these two matrices we can perform matrix operations to navigate through the
argumentation framework.

Definition 2. Let AF = 〈A,R〉 be an argumentation framework with A its
adjacency matrix and S ⊆ A. Set S is represented by a column vector Sn×1 =

(si,1), where si,1 =

{
1 if ai ∈ S
0 if ai /∈ S

Proposition 1. Let A be the adjacency matrix of an argumentation framework
AF = 〈A,R〉 and S ⊆ A be a set of arguments with S its column vector (resp.
ST row vector) representation. The product AS (resp. STA) is a column (resp.
row) vector where the entry (AS)i,1 (resp. (STA)1,i) shows how many times
argument ai ∈ A attacks (resp. is attacked by) S.

With the help of matrix operations we can answer question such as which
arguments in A attack (resp. are attacked by) a specific set of arguments. In this
way it is like using a series of matrix tools to navigate through the argumentation
framework. Many times, crucial information may get lost throughout the process
and therefore a gentle manipulation is needed. A method to keep track of the
information that might be used at a later point is useful.

Proposition 2 (conflict free test). Let AF = 〈A,R〉 be an argumentation
framework and A its adjacency matrix. Let S ⊆ A be a given set of arguments
with S its column vector representation. Let Γ = STA. S passes the conflict free
test if and only if whenever γi 6= 0 ∈ Γ then si = 0 ∈ S.

By constructing a matrix multiplication we can answer if a given set of ar-
guments S is conflict free. When a row matrix passes (resp. fails) the test we
conclude that S is (resp. is not) conflict free.

Proposition 3 (stable extensions test). Let AF = 〈A,R〉 be an argumenta-
tion framework with adjacency matrix A. Let S ⊆ A be a given set of arguments
and S the column vector of S and Γ = STA. The set S passes the stable exten-
sions test if and only if:

1. S passes the conflict free test, and
2. ∀i such that si = 0, γi 6= 0.

Note that for the stable extension test we do not use the admissibility test.
Intuitively, attacking anything that is “outside” of you means that you attack all
your attackers. This is true since passing the conflict free test shows that there
do not exist attacks coming “inside” of you thus any existing attacks should be
from “outside” and you attack them back anyway.



ASSA: Computing Stable Extensions with Matrices 3

Informally, we try to introduce a mathematical approach based on matrix
operations to research, and answer questions of the form: “Is set S an extension
accordingly to a semantic σ”? We accomplish this by converting the argumen-
tation framework as well as the set S into a matrix form A and S respectively.
We then perform matrix tools and operations to extract knowledge and answer
questions for set S, i.e. is S conflict free, admissible, ground or complete? At a
later point we want to expand our theory on other semantics as well.

2 ICCMA’15 Competition

In order to participate in ICCMA’15 competition we slightly changed our al-
gorithm to fit the rules of this contest. Specifically, we decided not to handle
each set of arguments as an individual and try to answer questions based on this
set, but to find all possible cases of such sets and combine them into a massive
matrix S

′
. Each S

′
column is one of the instances of S sets.

After building our solver, ASSA, and we were able to handle stable exten-
sions, we discovered that our approach is time consuming and the computational
hardness exponentially grows as the number of arguments become bigger and
bigger. For example, in order to consider all possible combinations for an argu-
mentation framework with n-many arguments, we have to compute a matrix S

′
,

with 2n columns. It was not much of a surprise when we discovered that our solver
runs out of memory after compiling it with an argumentation framework with
more than twenty arguments. We know that the result we provide suffers from
the computations complexity that follows matrix operations. In a later version
of ASSA, we plan to fix this by computing matric S

′
in a smarter way. We think

that by checking some critical arguments at an early stage may reduce the size,
and therefore the computational complexity, as well as the memory our solver
needs. Nonetheless, one can overcome this problem by running ASSA under
powerful parallel computers and then distribute matrix S

′
to several machines

that can handle S
′

as one matrix.

In conclusion, being part of a competition is intriguing. We have learned a lot
just by trying to implement our theory. Our solver is still at version one and we
hope that at a later point we can make it run faster and may be answer questions
of a more complicated nature. By finding stable extensions, we can also find some
complete extensions by definition. Unfortunately, this kind of questions is not
part of ASSA. We have decided to provide support only for questions related to
stable semantics:

– Given an abstract argumentation framework, determine some extension

– Given an abstract argumentation framework, determine all extensions

– Given an abstract argumentation framework and some argument, decide
whether the given argument is credulously inferred

– Given an abstract argumentation framework and some argument, decide
whether the given argument is skeptically inferred



4 ASSA: Computing Stable Extensions with Matrices

3 Description

Our solver is written in Java and uses the trivial graph format. Beside the
desire to get a good score, competitions are always interesting and informative.
Due to the former, we decided to participate in this contest despite the fact that
there is room for improvement on how fast ASSA can perform. We believe that
our idea is unique and we hope that many researches will get inspired.

On receiving a file containing the argumentation framework in tgf form we
read it and create its matrix representation, A. We then create all possible in-
stances of selected arguments and combine them into a matrix, S

′
. Based on

matrix operations and specifically left and right matrix multiplication we can
navigate inside the argumentation. Finding then which arguments attack other
arguments and which arguments are under attack, we extract all conflict free
sets. Based on some comparison to the system output matrices and S

′
, we then

find all stable extensions.
What we have learned while implementing the solver is that a more targeted

selection of arguments is necessary as ASSA can quickly run out of memory.
Our solver contains the folders bin, classes, data, lib and src. Under the data
folder a tgf file format is expected. To run ASSA under bin, click compile and
then click Solver. Results are printed on the screen.

References

1. Pietro Baroni, Martin Caminada, and Massimiliano Giacomin, An introduction to
argumentation semantics, Knowledge Eng. Review 26 (2011), no. 4, 365–410.

2. Phan Minh Dung, On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games, Artif. Intell. 77
(1995), no. 2, 321–358.

3. Phan Minh Dung, Paolo Mancarella, and Francesca Toni, Computing ideal sceptical
argumentation, Artif. Intell. 171 (2007), no. 10-15, 642–674.

4. Christos H Papadimitriou, Computational complexity, John Wiley and Sons Ltd.,
2003.

5. Gilbert W Stewart, Introduction to matrix computations, (1973).
6. Andrew James Stothers, On the complexity of matrix multiplication, (2010).


