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Abstract. This paper briefly describes the solver ASPrMin, which enu-
merates preferred extensions. It achieves this by running the ASP solver
clingo on an encoding for admissible extensions and setting the heuris-
tics in a way such that a subset maximal answer set is found first. It then
uses solution recording to find all subset maximal answer sets.

1 Abstract Argumentation and Preferred Extensions

We recall some basic notions in abstract argumentation (cf. [1]).

Definition 1. An argumentation framework (AF ) is a pair Γ = 〈A,R〉 where
A is a set of arguments and R ⊆ A×A. We say that b attacks a iff 〈b,a〉 ∈ R,
also denoted as b → a. The set of attackers of an argument a will be denoted
as a− , {b : b → a}, the set of arguments attacked by a will be denoted as
a+ , {b : a→ b}.

Definition 2. Given an AF Γ = 〈A,R〉:

– a set S ⊆ A is a conflict–free set of Γ if @ a, b ∈ S s.t. a→ b;
– an argument a ∈ A is acceptable with respect to a set S ⊆ A of Γ if ∀b ∈ A

s.t. b→ a, ∃ c ∈ S s.t. c→ b;
– a set S ⊆ A is an admissible set of Γ if S is a conflict–free set of Γ and

every element of S is acceptable with respect to S of Γ .
– a set S ⊆ A is a preferred extension of Γ , i.e. S ∈ EPR(Γ ), if S is a maximal

(w.r.t. ⊆) admissible set of Γ .

2 Implementation Using ASP Solver clingo

We use a straightforward and well-known encoding for admissible extensions,
see [2, 3].



Definition 3. Given an AF Γ = 〈A,R〉, for each a ∈ A a fact

arg(a).

is created and for each (a, b) ∈ R a fact

att(a, b).

is created (this corresponds to the apx file format in the ICCMA competition).
Together with the program

in(X) : −not out(X), arg(X).

out(X) : −not in(X), arg(X).

: −in(X), in(Y), att(X, Y).

defeated(X) : −in(Y), att(Y, X).

not defended(X) : −att(Y, X), not defeated(Y).

: −in(X), not defended(X).

we form admaspΓ and there is a one-to-one correspondence between answer sets
of admaspΓ and admissible extensions.

We can then exploit domain heuristics in the ASP solver clasp, a component
of clingo [4]. Following [5, 6], command line option --heuristic=Domain en-
ables domain heuristics, and --dom-mod=3,16 applies modifier true to all atoms
that are shown. Since we want to apply the modifier to all atoms with predicate
in, we augment admaspΓ by the line #showin/1. This means that the solver
heuristics will prefer atoms with predicate in over all other atoms and will choose
these atoms as being true first. This will find a subset maximal answer set with
respect to predicate in.

The system clingo also allows for solution recording, see [6], by specifying
command line option --enum-mod=domRec. Together with the domain heuristic,
this will enumerate all subset maximal answer set with respect to predicate in.

The full command line therefore is:

clingo admaspΓ --heuristic=Domain --dom-mod=3,16 --enum-mod=domRec

ASPrMin essentially makes this call and does some minor post-processing
using a shell sript. ASPrMIN version 1.0 can be downloaded from:

https://helios.hud.ac.uk/scommv/storage/ASPrMin-v1.0.tar.gz.
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