
The ASPrMin Solver – Enumerating Preferred
Extensions Using ASP Domain Heuristics

Wolfgang Faber1, Mauro Vallati1 Federico Cerutti2, and Massimiliano
Giacomin3

1 University of Huddersfield, Huddersfield, UK,
n.surname@hud.ac.uk

2 Cardiff University, Cardiff, UK, ceruttif@cardiff.ac.uk
3 Università degli Studi di Brescia, Brescia, Italy,

massimiliano.giacominb@unibs.it

Abstract. This paper briefly describes the solver ASPrMin, which enu-
merates preferred extensions. It achieves this by running the ASP solver
clingo on an encoding for admissible extensions and setting the heuris-
tics in a way such that a subset maximal answer set is found first. It then
uses solution recording to find all subset maximal answer sets.

1 Abstract Argumentation and Preferred Extensions

We recall some basic notions in abstract argumentation (cf. [1]).

Definition 1. An argumentation framework (AF ) is a pair Γ = 〈A,R〉 where
A is a set of arguments and R ⊆ A×A. We say that b attacks a iff 〈b,a〉 ∈ R,
also denoted as b → a. The set of attackers of an argument a will be denoted
as a− , {b : b → a}, the set of arguments attacked by a will be denoted as
a+ , {b : a→ b}.

Definition 2. Given an AF Γ = 〈A,R〉:

– a set S ⊆ A is a conflict–free set of Γ if @ a, b ∈ S s.t. a→ b;
– an argument a ∈ A is acceptable with respect to a set S ⊆ A of Γ if ∀b ∈ A

s.t. b→ a, ∃ c ∈ S s.t. c→ b;
– a set S ⊆ A is an admissible set of Γ if S is a conflict–free set of Γ and

every element of S is acceptable with respect to S of Γ .
– a set S ⊆ A is a preferred extension of Γ , i.e. S ∈ EPR(Γ ), if S is a maximal

(w.r.t. ⊆) admissible set of Γ .

2 Implementation Using ASP Solver clingo

We use a straightforward and well-known encoding for admissible extensions,
see [2, 3].



Definition 3. Given an AF Γ = 〈A,R〉, for each a ∈ A a fact

arg(a).

is created and for each (a, b) ∈ R a fact

att(a, b).

is created (this corresponds to the apx file format in the ICCMA competition).
Together with the program

in(X) : −not out(X), arg(X).

out(X) : −not in(X), arg(X).

: −in(X), in(Y), att(X, Y).

defeated(X) : −in(Y), att(Y, X).

not defended(X) : −att(Y, X), not defeated(Y).

: −in(X), not defended(X).

we form admaspΓ and there is a one-to-one correspondence between answer sets
of admaspΓ and admissible extensions.

We can then exploit domain heuristics in the ASP solver clasp, a component
of clingo [4]. Following [5, 6], command line option --heuristic=Domain en-
ables domain heuristics, and --dom-mod=3,16 applies modifier true to all atoms
that are shown. Since we want to apply the modifier to all atoms with predicate
in, we augment admaspΓ by the line #showin/1. This means that the solver
heuristics will prefer atoms with predicate in over all other atoms and will choose
these atoms as being true first. This will find a subset maximal answer set with
respect to predicate in.

The system clingo also allows for solution recording, see [6], by specifying
command line option --enum-mod=domRec. Together with the domain heuristic,
this will enumerate all subset maximal answer set with respect to predicate in.

The full command line therefore is:

clingo admaspΓ --heuristic=Domain --dom-mod=3,16 --enum-mod=domRec

ASPrMin essentially makes this call and does some minor post-processing
using a shell sript. ASPrMIN version 1.0 can be downloaded from:

https://helios.hud.ac.uk/scommv/storage/ASPrMin-v1.0.tar.gz.

Acknowledgements

We would like to thank Stefan Woltran and Torsten Schaub for pointing us to
this way of implementing subset maximality.



References

1. Dung, P.M.: On the Acceptability of Arguments and Its Fundamental Role in
Nonmonotonic Reasoning, Logic Programming, and n-Person Games. 77(2) (1995)
321–357

2. Egly, U., Alice Gaggl, S., Woltran, S.: Answer-set programming encodings for ar-
gumentation frameworks. Argument & Computation 1(2) (2010) 147–177

3. Charwat, G., Dvorák, W., Gaggl, S.A., Wallner, J.P., Woltran, S.: Methods for solv-
ing reasoning problems in abstract argumentation – A survey. Artificial Intelligence
220 (2015) 28–63

4. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control:
Preliminary report. In: Technical Communications of the Thirtieth International
Conference on Logic Programming (ICLP 2014). (2014)

5. Gebser, M., Kaufmann, B., Romero, J., Otero, R., Schaub, T., Wanko, P.: Domain-
specific heuristics in answer set programming. In desJardins, M., Littman, M.L.,
eds.: Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence,
July 14-18, 2013, Bellevue, Washington, USA., AAAI Press (2013)

6. Gebser, M., Kaminski, R., Kaufmann, B., Lindauer, M., Ostrowski, M., Romero,
J., Schaub, T., Thiele, S.: Potassco user guide. (2015) Available at
https://sourceforge.net/projects/potassco/files/guide/.


