
CoQuiAAS v2.0: Taking Benefit from Constraint
Programming to Solve Argumentation Problems ?

Jean-Marie Lagniez1, Emmanuel Lonca1, and Jean-Guy Mailly2

1 CRIL – Univ. Artois, CNRS
{lagniez,lonca}@cril.fr,
2 LIPADE – Univ. Paris Descartes,

jean-guy.mailly@parisdescartes.fr

Abstract. This paper presents how we have extended the existing software Co-
QuiAAS to handle the new challenges proposed for the ICCMA 2017. The main
idea behind CoQuiAAS is to use different Constraint Programming techniques
to develop a software library dedicated to argumentative reasoning. More specifi-
cally, we use Boolean Satisfiability (SAT) and Maximal Satisfiable Sets extraction
(MSS) to solve all the different computational problems from ICCMA 2017. Our
library offers the advantages to be efficient, generic and easily adaptable.

1 Introduction

Computational problems related to abstract argumentation frameworks (AFs) [1] are
interesting from a theoretical point of view (since argumentation can be used to encode
a wide family of non-monotonic inference relations) and from a practical point of view
(applications of argumentation exist in various fields like e-democracy, automated ne-
gociation or reasoning from inconsistent knowledge). An AF can be seen as a directed
graph where the nodes represent arguments and the edges represent attacks between
these arguments. The meaning of such a graph is determined by an acceptability se-
mantics, which indicates how to select sets of arguments which can be jointly accepted;
such a set of arguments is then called an extension.

We have designed a software library called CoQuiAAS to compute the usual rea-
soning tasks (credulous or skeptical acceptance of an argument, computation of an ex-
tension, enumeration of all the extensions) for the classical semantics (grounded, stable,
preferred, complete). CoQuiAAS is based on Constraint Programming (CP) techniques:
since this domain already proposes some very efficient solutions to solve high complex-
ity combinatorial problems, it is interesting to take benefit from the advances of the CP
community to solve efficiently argumentation problems. We are in particular interested
in propositional logic and some formalisms derived from it. More precisely, we use
some CNF formulae to solve problems from the first level of the polynomial hierarchy,
and some encodings in the Partial Max-SAT formalism for higher complexity prob-
lems. We take advantage of these encodings to solve these reasoning tasks, using some
state-of-the-art approaches and software, which have proven their practical efficiency.
? This work benefited from the support of the project AMANDE ANR-13-BS02-0004 of the

French National Research Agency (ANR).



After the development of a first version of CoQuiAAS which can handle the differ-
ent reasoning tasks for the grounded, stable, preferred and complete semantics [2], we
have extended our software library to handle the new challenges proposed in the frame
of ICCMA 2017, namely solving the usual reasoning tasks for semi-stable [3], stage [4]
and ideal semantics [5], and enumerating the grounded, stable and preferred extensions
in a row (a.k.a. Dung’s Triathlon). This extension of CoQuiAAS has been permitted
by its original conception, which makes our platform easily upgradable. Similarly, Co-
QuiAAS’ conception allows to easily benefit from the advances in CP research. For
instance, we have been able to easily add the MSS extractor lbx [6] as a replacement
of the built-in MSS extractor which was used in the first version of CoQuiAAS [7]. So
now CoQuiAAS can benefit from the best approach for extracting MSSes, and it will be
once again easy to update CoQuiAAS if a new technique outperforms lbx in the future.
Finally, some other improvements have been made in term of conception, resulting in a
better separation between argumentation solvers (complete semantics solvers, preferred
semantics solvers, ...) and constraint solvers (SAT solvers, MSS computers, ...).

CoQuiAAS is distributed as an open source software. The current version of Co-
QuiAAS is available on-line: http://www.cril.univ-artois.fr/coquiaas.

2 Encoding Range-based Semantics

CoQuiAAS takes advantage of the encodings proposed by [8] to compute the extensions
of an AF, and to determine whether a given argument is skeptically or credulously ac-
cepted by an AF F . The full description of this technique for “basic” and “max-based”
semantics is given in [2]. By basic semantics, we mean an argumentation semantics σ
such that, for any AF F , we can build a propositional formula ΦFσ such that the models
of it correspond to the σ-extensions of F (e.g. the stable and complete semantics). By
“max-based” semantics, we mean the semantics such that only maximal models of the
formula correspond to σ-extensions (e.g. the preferred semantics). We recall that we
encode the problem of searching maximal models into the search of MSSes. Here we
describe how we have adapted this technique for range-based semantics, i.e. semantics
which yield extensions such that their range3 is maximal. This is the case, for instance,
of the semi-stable semantics.

Our encodings are based on propositional logic, defined with the usual connectives
on the set of Boolean variables VA = {xai , Pai | ai ∈ A}. The propositional variable
xai denotes the fact the argument ai is in an extension of F , and Pai means that an
attacker of ai is in the considered extension. Interestingly, the Pai were already used
in the first release of CoQuiAAS to reduce the number of generated clauses, and are
now also used to encode the ranges; we can encode the fact that ai is in the range of
the extension using the disjunction xai ∨ Pai . For a matter a readability, we use in the
following ai (resp. Pi) rather than xai (resp. Pai ).

ΦFco is a propositional formula built on the ai variables such that its models match
the complete extensions of F . Taking advantage of our encoding, we define a Partial

3 The range of a set of arguments S in an AF F is R(S, F ) = S ∪ S+, where S+ is the set of
arguments attacked by S in F .



Max-SAT instance for the semi-stable semantics ΦFsst as

ΦFsst = {(ΦFco,+∞), (a1 ∨ P1, 1), . . . , (an ∨ Pn, 1)}

The set of semi-stable extensions of F corresponds to the set of MSSes of ΦFsst. The
hard constraint (ΦFco,+∞) states that only a MSS which corresponds to a complete ex-
tension can be selected. The soft constraints (ai ∨ Pi, 1) for each argument ai ensure
that the range will be maximized: a MSS of ΦFsst is an affectation of the Boolean vari-
ables such that each hard constraint is satisfied, and the set of soft constraints which are
satisfied is maximal w.r.t. ⊆. This corresponds to the definition of semi-stable exten-
sions. The ΦFstg formula, corresponding to the stage semantics is built in the same way,
except that the hard constraint part is replaced by conflict freeness constraints.

Concerning the ideal semantics extension, we compute the maximal extension which
only involves arguments that are parts of all the preferred extensions. Thus, we first take
advantage of theΦFpr formula defined in [2], and then add unit clauses in order to prevent
arguments bi which are not parts of all preferred extensions to appear in the resulting
ideal extension, which leads to the following formula :

ΦFid = {(ΦFco,+∞), (¬b1,+∞), . . . , (¬bp,+∞), (a1, 1), . . . , (an, 1)}.

Finally, the computation of Dung’s triathlon mainly consists in computing the set of
preferred extensions, since the stable extensions may be determined from the set of pre-
ferred extension in polynomial time, while the computation of the grounded extension
is also polynomial.

3 CoQuiAAS : Design of the Library

We take advantage of the OOP paradigm offered by the C++ programming language to
provide a modular, reusable and easily adaptable architecture, shown at Figure 1.

First, CoQuiAAS is built on top of three main components : the option (command
line) parser, the instance parser and the solver parts. Since these three parts are inde-
pendant, one can easily adapt the code in order to provide alternative ways to enter the
argumentation framework or the solver options (i.e. use CoQuiAAS as a library instead
of a standalone application).

Compared to the older versions of CoQuiAAS, argumentation solvers and constraint
solvers are now clearly separated, which decreases the code redundency. Before this
architecture improvement, it was necessary to write one solver by couple of semantics
and constraint solver ; now, when adding a new constraint solver, it can be immediatly
used for any semantics depending of this kind of solver (SAT or MSS).

In the future, we plan to build a real library, allowing any user to use CoQuiAAS in
another application without needing any code modification.



OptionsParser

+ file
+ format
+ sem
+ task
+ solverOpts

+ parseCommandLine()

ParserFactory

+ getInstance(format)

IParser

+ variables
+ attacks

+ parse(file)

ApxParser TgfParser

SolverFactory

+ getInstance(sem, task, solverOpts)

ArgSolver

+ result

+ init(variables, attacks)
+ computeResult()

CompleteSemSolver SemistableSemSolver

SatSolver

+ models

+ addClause(lits)
+ computeOneModel()
+ computeAllModels()

BuiltinSatSolver

ExternalSatSolver

MssSolver

+ msses

+ addClause(lits, weight)
+ computeOneMss()
+ computeAllMsses()

BuiltinMssSolver LbxMssSolver

Fig. 1. Simplified class diagram of CoQuiAAS

References

1. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming, and n-person games. Artificial Intelligence 77(2) (1995) 321–
357

2. Lagniez, J.M., Lonca, E., Mailly, J.G.: CoQuiAAS: A constraint-based quick abstract argu-
mentation solver. In: Proc. of ICTAI’15. (2015) 928–935

3. Caminada, M., Carnielli, W.A., Dunne, P.E.: Semi-stable semantics. J. Log. Comput. 22(5)
(2012) 1207–1254

4. Verheij, B.: Two approaches to dialectical argumentation: admissible sets and argumentation
stages. In: Proc. of NAIC’96. (1996) 357–368

5. Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Artif. Intell.
171(10-15) (2007) 642–674

6. Mencı́a, C., Previti, A., Marques-Silva, J.: Literal-based MCS extraction. In: Proc. of IJCAI
2015. (2015) 1973–1979

7. Grégoire, É., Lagniez, J.M., Mazure, B.: An experimentally efficient method for (MSS,
CoMSS) partitioning. In: Proc. of AAAI’14. (2014) 2666–2673

8. Besnard, P., Doutre, S.: Checking the acceptability of a set of arguments. In: Proc. of NMR’04.
(2004) 59–64


