ConArg: A Constraint-programming Solver for
Abstract Argumentation Problems

Stefano Bistarelli!, Fabio Rossi', Francesco Santini!

Dipartimento di Matematica e Informatica, Universita di Perugia, Italy
[bista,rossi,francesco.santini]@dmi.unipg.it

Abstract. ConArg is a Constraint-programming solver oriented to the
solution of problems related to extension-based semantics in Abstract
Argumentation. It exploits Gecode, an efficient C++ toolkit for devel-
oping constraint-based systems and applications. The properties required
by semantics are encoded into constraints, and arguments are assigned
to true if belonging to a valid extension for that semantics. Searching for
solutions of problems (as enumerating extensions or checking argument-
acceptance) takes advantage of well-known techniques as local consis-
tency, different heuristics for trying to assign values to variables, and
complete search-tree with branch-and-bound.

Description

ConArg (Argumentation with Constraints) is a Constraint-programming tool
oriented to the solution of problems related to extension-based semantics in
Abstract Argumentation [I2]. Since the first version of the tool [IJI0], it has
been updated with the purpose i) to solve further problems linked to weighted
problems [7I8] and coalitions of arguments [II], and) to improve its perfor-
mance over classical semantics, by using a benchmark assembled with random
graph-models [23l4]. The first version of ConArg [I0] was based on the Java
Constraint Programming SO]VGIE (JaCoP), a Java library that provides a Finite
Domain Constraint Programming paradigm [14].

Successively, for the sake of performance, a second version of the tool was
developed: the current version of ConArg exploits Gecode 4.4.0E|7 an efficient
C++ toolkit for developing constraint-based systems and applications. Some
performance comparisons have been already provided in [5l6]. The properties of
semantics are encoded into constraints, and arguments are assigned to 1 (true)
if belonging to a valid extension for that semantics (0 otherwise). Searching
for solutions takes advantage of classical techniques, such as local consistency,
different heuristics for trying to assign values to variables, and complete search-
tree with branch-and-bound. We have also dropped the graphical interface of
the first Java implementation, having a textual output only.

! http://www. jacop.eu
2 http://www.gecode.org.

http://www.jacop.eu
http://www.gecode.org

ConArg was submitted to the International Competition on Computational
Models of Argumentation (ICCMA 2015) [15]. In 2015 the tool did not compete
in all the proposed tracks; for instance, it did not participate to credulous and
sceptical acceptance of arguments with the grounded semantics. One of the aims
for the 2017 edition of ICCMA is to participate in all the proposed tracks, in
order to have a thorough comparison.

ConArg can be currently used to:

— enumerate all conflict-free, admissible, complete, stable, grounded, preferred,
semi-stable, ideal, and stage extensions;

— return one extension given one of the semantics above;

— check the credulous and sceptical acceptance for the conflict-free, admissible,
complete, and stable semantics;

— find the a”-semantics described in [7Ig].

From the home-page of ConArgEI, it is possible to download the executable
of the solver, compiled for Linux i386 and x64 machines. Moreover, still at the
same Web-site, we offer a visual interface where to interactively draw abstract
frameworks (arguments and attacks as directed edges), and use ConArg as the
underlying solver for the requested problem.

The basic command-line usage is described in Fig.[I] Some practical examples
are: to enumerate all admissible extensions: “conarg_gecode -e admissible file.dl”,
to check the sceptical acceptance of argument “a” with the stable semantics
“conarg_gecode -e stable -s a file.dl”, to compute all a-complete extensions [9]
with a = 3 “conarg_gecode -e a-complete -a 3 file.dl”. An input file file.dl follows
the ASPARTIX format [13]: e.g., arg(a) for defining argument a, and att(a,b)
for declaring an attack from a to b.

We briefly show how we map AAFs to Constraint Satisfaction Problems
(CSPs) [14] in ConArg. A CSP can be defined as a triple P = (V, D, C), where
C is a set of constraints defined over the variables in V', each with domain
D. Given a framework (A, R), we define a variable for each argument a; € A
(V ={a1,az,...,a,}) and each of these arguments can be taken or not in an
extension, i.e., the domain of each variable is D = {1,0}. As an example we
report conflict-free and stable constraints, which can be respectively used to
model the conflict-free and (in combination) stable semantics.

— Conflict-free constraints. If R(a;, a;) is in the framework we need to prevent
a solution to include both a; and a;: =(a; = 1 A a; = 1). All other possible
variable assignments (a =0Ab=1), (a=1Ab=0)and (a =0Ab=0) are
permitted.

— Stable constraints. If we have a node a; with multiple parents (in the Ar-
gumentation graph) afi,afa, ...,as,, we need to add a constraint —(a; =
OANas1 =0A---Aasr =0). In words, if a node is not taken in an extension
(i.e. a; = 0), then it must be attacked by at least one of the taken nodes, that
is at least a parent of a; needs to be taken in a solution (that is, ay; = 1).

3 http://www.dmi.unipg.it/conarg/

http://www.dmi.unipg.it/conarg/

USAGE:

conarg_gecode [—s <string>] [—c <string> | [—a <double>] —e <string>
[-—] [-—version] [—h] <string>

Where :

—s <string> , ——skeptical <string>

Test an argument for sceptical acceptance (conflict —free, admissible,
complete and stable semantics only).

—c <string> , ——credulous <string>

Test an argument for credulous acceptance (conflict—free, admissible,
complete and stable semantics only).

—a <double> , ——alpha <double>

Alpha consistency budget (for alpha extensions only).

—e <string> , ——extension <string>

(required) Extensions to be enumerated (conflict—free, admissible,
complete, stable, preferred, grounded, semi—stable, ideal, stage, a—
conflict —free, a—admissible, a—complete, a—stable, a—preferred , a—

grounded semantics).
—, ——ignore_rest
Ignores the rest of the labeled arguments following this flag.

—version

Displays version information and exits.
—h, —help

Displays usage information and exits.
<string>

(required) Input File in Aspartix format.

Fig. 1. How to call ConArg from command-line.

Moreover, if a node a; has no parent in the graph, it has to be included in
every extension, i.e., =(a; = 0).

Preferred extensions are found by assigning as more arguments as possible to
1 while searching for complete extensions. For this we use the Gecode heuristics
INT_VAL_MAX (such value is always 1 in our model).

Given a semantics, the credulous acceptance for an argument «a is checked by
setting that argument to 1 and then halting as soon as an extension containing
a is found (i.e., a is credulously accepted). In the worst case, all the search tree
is explored without any result, i.e., a is not credulously accepted. Checking the
sceptical acceptance is a dual problem: given a semantics, we set a to 0 and then
we stop as soon as an extension containing a is found (i.e., a is not credulously
accepted). In the worst case, all the search tree is explored without any result,
i.e., a is sceptically accepted.

In the future we would like to extend ConArg to solve coalition-based prob-
lems [11], and labelling-based extensions, where having an assignment domain
wider than just {¢rue, false} suggests the use of a constraint-based solver. Further
possible extensions concern Bipolar Argumentation Frameworks, or Constrained-
Argumentation Frameworks, where additional used-defined constraints can be
adopted to select only some extensions of a given semantics (e.g., “when a is in,
then also b must be in”). In addition, we are currently exploring applications of
our tool as a reasoning engine for Cybersecurity problems and Decision-making.

References

1.

10.

11.

12.

13.

14.

15.

S. Bistarelli, D. Pirolandi, and F. Santini. Solving weighted argumentation frame-
works with soft constraints. In ERCIM International Workshop on Constraint
Solving and Constraint Logic Programming (CSCLP), volume 6384 of LNCS, pages
1-17, 2009.

. S. Bistarelli, F. Rossi, and F. Santini. Benchmarking hard problems in random

abstract AFs: The stable semantics. In Computational Models of Argument - Pro-
ceedings of COMMA, volume 266 of Frontiers in Artificial Intelligence and Appli-
cations, pages 153—-160. IOS Press, 2014.

S. Bistarelli, F. Rossi, and F. Santini. Efficient solution for credulous/sceptical
acceptance in lower-order dung’s semantics. In 26th IEEE International Conference
on Tools with Artificial Intelligence, (ICTAI), pages 800-804. IEEE Computer
Society, 2014.

S. Bistarelli, F. Rossi, and F. Santini. Enumerating extensions on random abstract-
AFs with ArgTools, Aspartix, ConArg2, and Dung-O-Matic. In Computational
Logic in Multi-Agent Systems - 15th International Workshop, CLIMA XV, volume
8624 of LNCS, pages 70-86. Springer, 2014.

S. Bistarelli, F. Rossi, and F. Santini. A first comparison of abstract argumen-
tation reasoning-tools. In FCAI 2014 - 21st European Conference on Artificial
Intelligence, volume 263 of FAIA, pages 969-970. IOS Press, 2014.

. S. Bistarelli, F. Rossi, and F. Santini. A comparative test on the enumeration of

extensions in abstract argumentation. Fundam. Inform., 140(3-4):263-278, 2015.
S. Bistarelli, F. Rossi, and F. Santini. A collective defence against grouped attacks
for weighted abstract argumentation frameworks. In Proceedings of the Twenty-
Ninth International Florida Artificial Intelligence Research Society Conference,
FLAIRS, pages 638—643. AAAI Press, 2016.

S. Bistarelli, F. Rossi, and F. Santini. A relaxation of internal conflict and defence
in weighted argumentation frameworks. In Logics in Artificial Intelligence - 15th
European Conference, JELIA, volume 10021 of LNCS, pages 127-143. Springer,
2016.

S. Bistarelli and F. Santini. A common computational framework for semiring-
based argumentation systems. In ECAI 2010 - 19th Furopean Conference on Ar-
tificial Intelligence, volume 215 of FAIA, pages 131-136. IOS Press, 2010.

S. Bistarelli and F. Santini. Conarg: A constraint-based computational framework
for argumentation systems. In 23rd IEEE International Conference on Tools with
Artificial Intelligence (ICTAI), pages 605-612. IEEE Computer Society, 2011.

S. Bistarelli and F. Santini. Coalitions of arguments: An approach with constraint
programming. Fundam. Inform., 124(4):383-401, 2013.

P. M. Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artif. Intell.,
77(2):321-357, 1995.

U. Egly, S. A. Gaggl, and S. Woltran. Answer-set programming encodings for
argumentation frameworks. Argument & Computation, 1(2):147-177, 2010.

F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming (Foun-
dations of Artificial Intelligence). Elsevier Science Inc., New York, NY, USA, 2006.
M. Thimm, S. Villata, F. Cerutti, N. Oren, H. Strass, and M. Vallati. Summary
report of the first international competition on computational models of argumen-
tation. AI Magazine, 37(1):102, 2016.

	ConArg: A Constraint-programming Solver for Abstract Argumentation Problems

