
The Second International Competition on
Computational Models of Argumentation (ICCMA’17)∗

Solver Requirements

Sarah A. Gaggl Thomas Linsbichler Marco Maratea Stefan Woltran

October 19, 2016

This document contains requirements for solvers participating at ICCMA’17. In
particular, this document provides some formal background on abstract argumen-
tation, a list of computation problems (tasks) considered in the competition, the
input formats of benchmark instances, the expected output format of results, and a
description of the interface participating solvers are required to provide.

1 Abstract Argumentation

An abstract argumentation framework (AF, for short) (Dung, 1995) is a tuple F = (A,→) where
A is a set of arguments and → is a relation →⊆ A×A. For two arguments a, b ∈ A the relation
a → b means that argument a attacks argument b. An argument a ∈ A is defended by S ⊆ A
(in F) if for each b ∈ A such that b → a there is some c ∈ S such that c → b. A set E ⊆ A is
conflict-free (in F) if and only if there are no a, b ∈ E with a → b. E is admissible (in F) if
and only if it is conflict-free and each a ∈ E is defended by E. Finally, the range of E (in F)
is given by E+

F = E ∪ {a ∈ A | ∃b ∈ E : b→ a}.
Semantics are used to determine sets of jointly acceptable arguments by mapping each AF
F = (A,→) to a set of extensions σ(F) ⊆ 2A. The extensions under complete, preferred, stable,
semi-stable (Caminada et al., 2012), stage (Verheij, 1996), grounded and ideal (Dung et al.,
2007) semantics are defined as follows. Given an AF F = (A,→) and a set E ⊆ A,

• E ∈ CO(F) iff E is admissible in F and if a ∈ A is defended by E in F then a ∈ E,

• E ∈ PR(F) iff E ∈ CO(F) and there is no E′ ∈ CO(F) s.t. E′ ⊃ E,

• E ∈ ST(F) iff E ∈ CO(F) and E+
F = A,

• E ∈ SST(F) iff E ∈ CO(F) and there is no E′ ∈ CO(F) s.t. E′+
F ⊃ E

+
F ,

• E ∈ STG(F) iff E is conflict-free in F and there is no E′ that is conflict-free in F s.t.
E′+

F ⊃ E
+
F ,

• E ∈ GR(F) iff E ∈ CO(F) and there is no E′ ∈ CO(F) s.t. E′ ⊂ E,

∗Adapted from last edition’s version by Federico Cerutti, Nir Oren, Hannes Straß, Matthias Thimm, and Mauro
Vallati

1

• E ∈ ID(F) if and only if E is admissible, E ⊆
⋂
PR(F) and there is no admissible

E′ ⊆
⋂

PR(F) s.t. E′ ⊃ E.

For more discussion on these semantics see (Baroni et al., 2011).
Note that both grounded and ideal extensions are uniquely determined and always exist

(Dung, 1995; Dung et al., 2007). Thus, they are also called single-status semantics. The other
semantics introduced are multi-status semantics. That is, there is not always a unique extension
induced by the semantics. In order to reason with multi-status semantics, usually, one takes
either a credulous or skeptical perspective.

That is, given an AF F = (A,→) and a semantics σ ∈ {CO,PR,ST,SST,STG,GR, ID},
argument a ∈ A is

• credulously accepted in F under semantics σ if there is a σ-extension E ∈ σ(F) with
a ∈ E, and

• skeptically accepted in F with semantics σ if for all σ-extensions E ∈ σ(F) it holds that
a ∈ E.

Recall that stable semantics is the only case where an AF might possess no extension. In
such a situation, each argument is defined to be skeptically accepted.

2 Computational problems

Let σ ∈ {CO,PR,ST,SST,STG,GR, ID} be some semantics. We consider the following
computational tasks1:

DC-σ Given F = (A,→) and a ∈ A, decide whether a is credulously accepted in F under σ.

DS-σ Given F = (A,→) and a ∈ A, decide whether a is skeptically accepted in F under σ.

SE-σ Given F = (A,→), return some set E ⊆ A that is a σ-extension of F .

EE-σ Given F = (A,→), enumerate all sets E ⊆ A that are σ-extensions of F .

Moreover, a special track called Dung’s Triathlon is conducted:

D3 Given F = (A,→), enumerate

• all sets E ⊆ A that are GR-extensions of F , followed by

• all sets E ⊆ A that are ST-extensions of F , followed by

• all sets E ⊆ A that are PR-extensions of F .

3 Input File formats

Each benchmark instance will be provided in two different file formats: trivial graph format
(tgf) and aspartix format (apx). In the following we present the AF F = (A,→) where
A = {a1, a2, a3} and →= {(a1, a2), (a2, a3), (a2, a1)} in each of these formats.

1With the exception of DS-GR, EE-GR, DS-ID, and EE-ID.

2

3.1 Trivial Graph Format

See http://en.wikipedia.org/wiki/Trivial_Graph_Format. In the following we will refer
to the file containing this instance by myFile.tgf.

1

2

3

#

1 2

2 3

2 1

3.2 Aspartix Format

See (Egly et al., 2010). In the following we will refer to the file containing this instance by
myFile.apx.

arg(a1).

arg(a2).

arg(a3).

att(a1,a2).

att(a2,a3).

att(a2,a1).

4 Output Format

Solvers must write the result to standard output exactly in the format described below.

• DC-σ for σ ∈ {CO,PR,ST,SST,STG,GR, ID}:
The output must be either

YES

expressing that the queried argument is credulously accepted in the given AF under σ, or

NO

if the queried argument is not credulously accepted in the given AF under σ.

• DS-σ for σ ∈ {CO,PR,ST,SST,STG}:
The output must be either

YES

expressing that the queried argument is skeptically accepted in the given AF under σ, or

NO

3

http://en.wikipedia.org/wiki/Trivial_Graph_Format

if the queried argument is not skeptically accepted in the given AF under σ.

• SE-σ for σ ∈ {CO,PR,ST,SST,STG,GR, ID}:
The output must be of the form

[a1,a3,a6]

expressing that {a1, a3, a6} is a σ-extension of the given AF, or

NO

expressing that there does not exist a σ-extension of the given AF.

• EE-σ for σ ∈ {CO,PR,ST,SST,STG}:
The output must be of the form

[[a1,a2],[a1,a3],[a2,a3]]

expressing that the set of σ-extensions of the given AF is exactly {{a1, a2}, {a1, a3}, {a2, a3}},
or

[]

expressing that there does not exist a σ-extension of the given AF. Note that if the empty
set is the only σ-extension of the given AF, the output is required to be [[]].

• D3:

The output must be of the form

[[a1]],[],[[a1,a2],[a1,a3]]

expressing that the grounded extension of the given AF is {a1}, the given AF has no
stable extensions, and that its set of preferred extensions is exactly {{a1, a2}, {a1, a3}}.

5 Solver Interface

The single executable of a solver should be runnable from a command line and must provide
the following behavior (let solver be the filename of the executable):

• solver (without any parameters)
Prints author and version information of the solver on standard output.
Example:

user$ solver

MySolver v1.0

John Smith

user$ _

4

• solver --formats

Prints the supported formats of the solver in the form

[supportedFormat1,supportedFormat2, ..., supportedFormatN]

The possible values for each supported format are tgf, apx.
Example:

user$ solver --formats

[tgf,apx]

user$ _

• solver --problems

Prints the supported computational problems in the form

[supportedProblem1,supportedProblem2, ..., supportedProblemN]

The possible values for each supported problem are DC-CO, DC-PR, DC-ST, DC-SST, DC-STG,
DC-GR, DC-ID, DS-CO, DS-PR, DS-ST, DS-SST, DS-STG, SE-CO, SE-PR, SE-ST, SE-SST,
SE-STG, SE-GR, SE-ID, EE-CO, EE-PR, EE-ST, EE-SST, EE-STG, and D3.
Example:

user$ solver --problems

[DC-CO,DS-CO,EE-CO,SE-ST]

user$ _

• solver -p <task> -f <file> -fo <fileformat> [-a <additional parameter>]

Solves the given problem on the argumentation framework specified by the given file
(represented in the given file format) and prints out the result. More specifically:

– solver -p DC-<semantics> -f <file> -fo <fileformat>

-a <additional parameter>

Solves the problem of deciding whether an argument (given as additional parameter)
is credulously inferred and prints out either YES (if it is credulously inferred) or NO

(if it is not credulously inferred).
Example:

user$ solver -p DC-CO -f myFile.apx -fo apx -a a1

YES

user$ _

– solver -p DS-<semantics> -f <file> -fo <fileformat>

-a <additional parameter>

Solves the problem of deciding whether an argument (given as additional parameter)
is skeptically inferred and prints out either YES (if it is credulously inferred) or NO (if
it is not credulously inferred).
Example:

user$ solver -p DC-ST -f myFile.apx -fo apx -a a2

NO

user$ _

5

– solver -p SE-<semantics> -f <file> -fo <fileformat>

Returns one extension wrt. the given semantics in the format [A1,A2,...,AN] (no
further parameters needed).
Example:

user$ solver -p SE-PR -f myFile.tgf -fo tgf

[a1,a3]

user$ _

If there does not exist any extension wrt. the given semantics (which can be the case
for stable semantics) then the output NO is expected by the solver.
Example:

user$ solver -p SE-ST -f anotherFile.tgf -fo tgf

NO

user$ _

– solver -p EE-<semantics> -f <file> -fo <fileformat>

Enumerates all sets that are extensions wrt. the given semantics in the format
[[A1,A2,...,AN],[B1,B2,...,BM],..., [Z1,Z2,...,ZN]] (no further parameters
needed).
Example:

user$ solver -p EE-PR -f myFile.apx -fo apx

[[a1,a3],[a2]]

user$ _

– solver -p D3 -f <file> -fo <fileformat>

Enumerates all sets that are extensions wrt. GR, followed by all sets that are exten-
sions wrt. ST, followed by all sets that are extensions w.r.t. PR, each in the same
format as above. (no further parameters needed).
Example:

user$ solver -p D3 -f myFile.apx -fo apx

[[]],[[a1,a3],[a2]],[[a1,a3],[a2]]

user$ _

Each solver has to support at least one file format. It is ensured that each solver is only
called with file formats and problems he supports (the behavior of a solver when called with
unsupported parameters is undefined).

References

P. Baroni, M. Caminada, and M. Giacomin. An introduction to argumentation semantics. The
Knowledge Engineering Review, 26(4):365–410, 2011.

M. W. A. Caminada, W. A. Carnielli, and P. E. Dunne. Semi-stable semantics. J. Log. Comput.,
22(5):1207–1254, 2012.

P. M. Dung, P. Mancarella, and F. Toni. Computing ideal sceptical argumentation. Artificial
Intelligence, 171(10–15):642–674, 2007.

P. M. Dung. On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic
Reasoning, Logic Programming and n-Person Games. Artificial Intelligence, 77(2):321–358,
1995.

6

U. Egly, S. A. Gaggl, and S. Woltran. Answer-set programming encodings for argumentation
frameworks. Argument & Computation, 1(2):147–177, 2010.

B. Verheij. Two approaches to dialectical argumentation: admissible sets and argumentation
stages. In Proceedings of the 8th Dutch Conference on Artificial Intelligence (NAIC’96), pages
357–368, 1996.

7

	Abstract Argumentation
	Computational problems
	Input File formats
	Trivial Graph Format
	Aspartix Format

	Output Format
	Solver Interface

