
goDIAMOND 0.6.6
ICCMA 2017 System Description?

Hannes Strass and Stefan Ellmauthaler

Computer Science Institute, Leipzig University, Germany
{strass,ellmauthaler}@informatik.uni-leipzig.de

Abstract. We describe goDIAMOND as a submission to ICCMA 2017. goDIAMOND

builds upon, re-implements and extends previous versions of the DIAMOND sys-
tem. It has a special focus on dedicated AF technology and straightforward inte-
gration of improved solving back-ends.

1 Introduction

DIAMOND (standing for DIAlectical MOdels eNcoDing) loosely refers to a family of
solvers for abstract dialectical frameworks (ADFs) [4]. All its members are based on an-
swer set programming (ASP) [11]. More specifically, each member consists of several
ASP encodings along with some (typically codified) information on what encodings
have to be combined to obtain a specific desired solving/reasoning behaviour. So es-
sentially DIAMOND reduces ADF problems to ASP problems and solves them using an
ASP solver (usually clingo [10]). In this paper we describe the latest addition to the fam-
ily, goDIAMOND, in its role as submission to the second installment of the International
Competition on Computational Models of Argumentation (ICCMA 2017).1

An earlier version of DIAMOND [8], version 2.0.2 written in Python,2 participated
in the previous (first) installment of ICCMA [12]. Its performance was rather low.
Along with a lack of dedication to software development and testing due to numerous
other commitments, we identified the communication between DIAMOND and clingo
via Python’s os.pipes as one source of error. This motivated a re-implementation
of DIAMOND in C++ [9], leading to versions 3.0.x. That family member, colloquially
called CDIAMOND, aimed to mostly avoid such communication by making use of the
clingo C++ library with its facilities for creating and invoking solver objects and com-
municating with them. A student of ours did an experimental comparison between the
versions [2] using the probo software [5] and the ICCMA 2015 problem instances.3

The new system (3.0.1) had fewer wrong answers, but was actually slower than the
previous one (version 2.0.2, submitted to ICCMA 2015). We have not yet analysed the
reasons for that, but suspect a difference in configuration defaults between stand-alone
command-line clingo and the library used for CDIAMOND.

? This work has been partially supported by the German Research Foundation (DFG) under
grants BR-1817/7-1 and FOR 1513.

1 http://www.dbai.tuwien.ac.at/iccma17/
2 http://python.org
3 http://argumentationcompetition.org/2015/iccma2015_benchmarks.zip

http://www.dbai.tuwien.ac.at/iccma17/
http://python.org
http://argumentationcompetition.org/2015/iccma2015_benchmarks.zip


The goDIAMOND system is (yet) another re-implementation of DIAMOND, using
the programming language go.4 In addition to re-implementing the “program logic”
of how to combine encodings, we also improved some of the encodings and the gen-
eral workflow, and added special functionality for dealing with abstract argumentation
frameworks (AFs) [6]. The goDIAMOND software is available at Sourceforge:

https://sourceforge.net/p/diamond-adf/code/ci/go/tree/go/

2 Architecture

In principle, goDIAMOND is called on the command-line with arguments indicating the
reasoning mode, semantics, input format, and instance file. goDIAMOND uses this in-
formation in a straightforward way to select a number of ASP encodings to pass to the
solving back-end, in this case clingo 5.0.0. There is roughly one encoding per input
format and semantics, and the instance file is passed on as-is. Possible input formats
are ADFs in functional syntax, ADFs in formula syntax, bipolar ADFs in formula syn-
tax, and AFs in ASPARTIX syntax. In terms of reasoning modes, goDIAMOND offers
all those that are relevant for ICCMA (one interpretation, all interpretations, credulous
acceptance, sceptical acceptance). It (currently) supports conflict-free, naive, stage, ad-
missible, complete, preferred, semi-stable, stable, and grounded semantics for all input
formats, and ideal semantics for the AF input format.

As one major novelty, goDIAMOND no longer computes preferred semantics using
two sequential solver calls (one for computing complete interpretations and one for
selecting the maximal ones), but instead uses a disjunctive encoding where the solver
takes care of both tasks in one solver call. Likewise, we added disjunctive encodings for
naive, stage, and semi-stable semantics. Finally, we re-implemented the encoding asso-
ciated to AF input as a positive logic program in order to avoid unnecessary guessing.

3 Dedicated AF Algorithms

goDIAMOND contains several implementations of native AF reasoning algorithms:

Grounded: To compute the grounded semantics of an AF, goDIAMOND stores incom-
ing and outgoing edges of each node, and then iteratively looks for nodes without
incoming edges, marking them as accepted, marking their successors as rejected,
and removing those rejected nodes from all incoming lists, until a fixpoint obtains.

Ideal: goDIAMOND implements the oracle call-based algorithm for computing ideal
semantics given by Dunne [7, Theorem 7]. The oracle calls are performed by in-
voking clingo and parsing its answer.

Dung’s Triathlon: For this special ICCMA 2017 task, goDIAMOND computes the grounded
semantics via its “native” algorithm and then stable semantics via a call to clingo.
Preferred semantics is computed via another solver call; to reduce redundancy, ad-
ditional constraints are added to the ASP encoding for computing the preferred se-
mantics of the instance, effectively leading the solver only to return those preferred
interpretations that are not also stable.

4 http://golang.org

https://sourceforge.net/p/diamond-adf/code/ci/go/tree/go/
http://golang.org


4 Conclusion

While this paper concentrated more on AF aspects of goDIAMOND, there have also
been improvements in its ADF solving capabilities. In the future, we want to compare
its performance with that of YADF [3]. We would also like to extend goDIAMOND for
dealing with further input formats [1].

References
1. Berthold, M.: Extending the DIAMOND system to work with GRAPPA. In: Thimm, M.,

Cerutti, F., Strass, H., Vallati, M. (eds.) Proceedings of the First International Workshop
on Systems and Algorithms for Formal Argumentation (SAFA) co-located with the 6th In-
ternational Conference on Computational Models of Argument (COMMA 2016), Potsdam,
Germany, September 13, 2016. CEUR Workshop Proceedings, vol. 1672, pp. 52–62. CEUR-
WS.org (2016), http://ceur-ws.org/Vol-1672/paper_5.pdf

2. Bordewisch, S.: Evaluierung von ADF-Solvern der DIAMOND-Familie. Bachelor’s thesis,
Leipzig University, Computer Science Institute (2017), in German.

3. Brewka, G., Diller, M., Heissenberger, G., Linsbichler, T., Woltran, S.: Solving advanced ar-
gumentation problems with answer-set programming. In: Singh, S.P., Markovitch, S. (eds.)
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI). pp.
1077–1083. AAAI Press (Feb 2017)

4. Brewka, G., Ellmauthaler, S., Strass, H., Wallner, J.P., Woltran, S.: Abstract dialectical frame-
works revisited. In: Proceedings of the Twenty-Third International Joint Conference on Ar-
tificial Intelligence (IJCAI). pp. 803–809. IJCAI/AAAI (Aug 2013)

5. Cerutti, F., Oren, N., Strass, H., Thimm, M., Vallati, M.: A benchmark framework for a com-
putational argumentation competition. In: Parsons, S., Oren, N., Reed, C. (eds.) Proceedings
of the Fifth International Conference on Computational Models of Argument (COMMA).
FAIA, vol. 266, pp. 459–460. IOS Press, The Scottish Highlands, Scotland, United King-
dom (Sep 2014)

6. Dung, P.M.: On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic
Reasoning, Logic Programming and n-Person Games. Artificial Intelligence 77, 321–358
(1995)

7. Dunne, P.E.: The computational complexity of ideal semantics. Artificial Intelligence
173(18), 1559–1591 (2009)

8. Ellmauthaler, S., Strass, H.: The DIAMOND System for Computing with Abstract Dialecti-
cal Frameworks. In: Parsons, S., Oren, N., Reed, C. (eds.) Proceedings of the Fifth Interna-
tional Conference on Computational Models of Argument (COMMA). FAIA, vol. 266, pp.
233–240. IOS Press, The Scottish Highlands, Scotland, United Kingdom (Sep 2014)

9. Ellmauthaler, S., Strass, H.: DIAMOND 3.0 – A native C++ implementation of DIAMOND.
In: Baroni, P. (ed.) Proceedings of the Sixth International Conference on Computational
Models of Argument (COMMA). FAIA, vol. 287, pp. 471–472. IOS Press, Potsdam, Ger-
many (Sep 2016)

10. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider, M.:
Potassco: The Potsdam Answer Set Solving Collection. AI Communications 24(2), 105–124
(2011), available at https://potassco.org.

11. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer set solving in practice. Syn-
thesis Lectures on Artificial Intelligence and Machine Learning 6(3), 1–238 (2012)

12. Thimm, M., Villata, S., Cerutti, F., Oren, N., Strass, H., Vallati, M.: Summary report of the
First International Competition on Computational Models of Argumentation. AI Magazine
37(1), 102 (2016)

http://ceur-ws.org/Vol-1672/paper_5.pdf
https://potassco.org

	godiamond 0.6.6

