
The Third International Competition on
Computational Models of Argumentation (ICCMA’19)∗

Solver Requirements

Stefano Bistarelli Lars Kotthoff Theofrastos Mantadelis Francesco Santini

Carlo Taticchi

January 24, 2019

This document contains requirements for solvers participating at ICCMA’19. In
particular, this document provides some formal background on abstract argumen-
tation, a list of computation problems (tasks) considered in the competition, the
input formats of benchmark instances, the expected output format of results, and a
description of the interface participating solvers are required to provide in a Docker
container.

1 Abstract Argumentation

An abstract argumentation framework (AF, for short) (Dung, 1995) is a tuple F = (A,→) where
A is a set of arguments and → is a relation →⊆ A×A. For two arguments a, b ∈ A the relation
a → b means that argument a attacks argument b. An argument a ∈ A is defended by S ⊆ A
(in F) if for each b ∈ A such that b → a there is some c ∈ S such that c → b. A set E ⊆ A is
conflict-free (in F) if and only if there are no a, b ∈ E with a → b. E is admissible (in F) if
and only if it is conflict-free and each a ∈ E is defended by E. Finally, the range of E (in F)
is given by E+

F = E ∪ {a ∈ A | ∃b ∈ E : b→ a}.
Semantics are used to determine sets of jointly acceptable arguments by mapping each AF
F = (A,→) to a set of extensions σ(F) ⊆ 2A. The extensions under complete, preferred, stable,
semi-stable (Caminada et al., 2012), stage (Verheij, 1996), grounded and ideal (Dung et al.,
2007) semantics are defined as follows. Given an AF F = (A,→) and a set E ⊆ A,

• E ∈ CO(F) iff E is admissible in F and if a ∈ A is defended by E in F then a ∈ E,

• E ∈ PR(F) iff E ∈ CO(F) and there is no E′ ∈ CO(F) s.t. E′ ⊃ E,

• E ∈ ST(F) iff E ∈ CO(F) and E+
F = A,

• E ∈ SST(F) iff E ∈ CO(F) and there is no E′ ∈ CO(F) s.t. E′+
F ⊃ E

+
F ,

• E ∈ STG(F) iff E is conflict-free in F and there is no E′ that is conflict-free in F s.t.
E′+

F ⊃ E
+
F ,

∗Adapted from last edition’s version by Sarah A. Gaggl, Thomas Linsbichler, Marco Maratea, and Stefan
Woltran.

1

• E ∈ GR(F) iff E ∈ CO(F) and there is no E′ ∈ CO(F) s.t. E′ ⊂ E,

• E ∈ ID(F) if and only if E is admissible, E ⊆
⋂
PR(F) and there is no admissible

E′ ⊆
⋂

PR(F) s.t. E′ ⊃ E.

For more discussion on these semantics see (Baroni et al., 2011).
Note that both grounded and ideal extensions are uniquely determined and always exist

(Dung, 1995; Dung et al., 2007). Thus, they are also called single-status semantics. The other
semantics introduced are multi-status semantics. That is, there is not always a unique extension
induced by the semantics. In order to reason with multi-status semantics, usually, one takes
either a credulous or skeptical perspective.

That is, given an AF F = (A,→) and a semantics σ ∈ {CO,PR,ST,SST,STG,GR, ID},
argument a ∈ A is

• credulously accepted in F under semantics σ if there is a σ-extension E ∈ σ(F) with
a ∈ E, and

• skeptically accepted in F with semantics σ if for all σ-extensions E ∈ σ(F) it holds that
a ∈ E.

Recall that stable semantics is the only case where an AF might possess no extension. In
such a situation, each argument is defined to be skeptically accepted.

2 Dockerization

Solvers need to be packaged by participants in a Docker container (https://www.docker.com).
The main advantage is to allow each solver to be delivered with its complete and intended run
time environment, with the purpose to make setup and deployment easier; differences between
participants’ and organizers’ running environment is thus avoided. Moreover, a dockerized
application can be launched on different platforms (e.g., Windows, Linux, macOS, and in the
cloud), making it possible to rerun the same experiments anywhere.

For more detailed information and guide to how to dockerize your solver, push it to a repos-
itory, and obtain a public link to it (to be submitted), please refer to http://iccma19.dmi.

unipg.it/res/ICCMA19_docker_manual.pdf.

3 Dynamic Frameworks

In previous ICCMA editions, all the frameworks in each database were considered static in the
sense that all the AFs were sequentially passed as input to solvers, representing different and
independent information: all tasks are computed from scratch without taking any potentially
useful knowledge from previous runs into account.

However, in many practical applications, an AF represents only a temporary situation: ar-
guments and attacks can be added/retracted to take into account new knowledge that becomes
available. For instance, in disputes among users of online social networks (Kökciyan et al.,
2016), arguments/attacks are repeatedly added/retracted by users to express their point of
view in response to the last move made by the adversaries in the current digital polylogue
(often disclosing as few arguments/attacks as possible).

The dynamics of frameworks has attracted recent and wide interest in the Argumentation
community. We describe some related work, which also points to the research groups interested

2

https://www.docker.com
http://iccma19.dmi.unipg.it/res/ICCMA19_docker_manual.pdf
http://iccma19.dmi.unipg.it/res/ICCMA19_docker_manual.pdf

in the organisation of such a track. In (Boella et al., 2009), the authors investigate the principles
according to which a grounded extension of a Dungs AF does not change when the set of
arguments/attacks are changed. The work of (Cayrol et al., 2010) studies how the extensions
can evolve when a new argument is considered. The authors focus on adding one argument
interacting with one starting argument (i.e., an argument which is not attacked by any other
argument). In further work (Xu and Cayrol, 2015), the authors study the evolution of the set
of extensions after performing a change operation (addition/removal of arguments/interaction).
In (Baroni et al., 2014), the authors propose a division-based method to divide the updated
framework into two parts: “affected” and “unaffected”. Only the status of affected arguments
is recomputed after updates. A matrix-reduction approach that resembles the previous division
method is presented in (Xu and Cayrol, 2015). A recent work that tests complete, preferred,
stable, and grounded semantics on an AF and a set of updates is (Alfano et al., 2017). This
approach finds a reduced (updated) AF sufficient to compute an extension of the whole AF,
and uses state-of-the-art algorithms to recompute an extension of the reduced AF only.

Modifications of AFs are also studied in the literature as a base to compute robustness
measures of frameworks (Bistarelli et al., 2018). In particular, by adding/removing an ar-
gument/attack, the set of extensions satisfying a given semantics may or may not change. For
instance, one could be interested in computing the number of modifications needed to bring a
change in this set, or measure the number of modifications needed to have a different set of
extensions satisfying a desired semantics. In the latter case, the user is interested in having an
estimate on how distant two different points of views are; this kind of approach has also been
proposed in (Baumann and Brewka, 2010).

4 Computational problems

ICCMA’19 offers the participation to 7 classical tracks (exactly the same standard tracks in
ICCMA’17), and 4 new dynamic tracks.

4.1 Classical Tracks

Let σ ∈ {CO,PR,ST,SST,STG,GR, ID} be some semantics. We consider the following
computational tasks1:

SE-σ Given F = (A,→), return some set E ⊆ A that is a σ-extension of F .

EE-σ Given F = (A,→), enumerate all sets E ⊆ A that are σ-extensions of F .

DC-σ Given F = (A,→) and a ∈ A, decide whether a is credulously accepted in F under σ.

DS-σ Given F = (A,→) and a ∈ A, decide whether a is skeptically accepted in F under σ.

The following tasks will be tested in ICCMA’19:

CO. Complete Semantics (SE, EE, DC, DS);

PR. Preferred Semantics (SE, EE, DC, DS);

1With the exception of DS-GR, EE-GR, DS-ID, and EE-ID. Note that DC-CO and DC-PR are equivalent
tasks (as EE-GR and SE-GR, DS-GR and DC-GR, EE-ID and SE-ID, DS-ID and DC-ID), but in order
to allow the participation in the preferred track without implementing any task on the complete semantics,
we repeat the task.

3

ST. Stable Semantics (SE, EE, DC, DS);

SST. Semi-stable Semantics (SE, EE, DC, DS);

STG. Stage Semantics (SE, EE, DC, DS);

GR. Grounded Semantics (only (SE) and (DC));

ID. Ideal Semantics (only (SE) and (DC)).

The combination of problems with semantics amounts to a total number of 24 tasks. Each
solver participating to ICCMA’19 can support, i.e. compete in, an arbitrary set of tasks. If
a solver supports all the tasks of a track (e.g., the track on the complete semantics), it also
automatically participates in the corresponding track.

4.2 Dynamic Tracks

In addition, 4 new tracks are dedicated to the solution of problems over dynamic argumentation
frameworks. In this case, an instance consists of an initial framework and an additional file
storing a sequence of additions/deletions of attacks. This file is provided through a simple text
format, e.g., a sequence of +att(a,b). or -att(d,e). (see Section 5.3).

The dynamics tracks and their tasks are presented in the following list:

CO. Complete Semantics (SE, EE, DC, DS);

PR. Preferred Semantics (SE, EE, DC, DS);

ST. Stable Semantics (SE, EE, DC, DS);

GR. Grounded Semantics (only (SE) and (DC)).

The combination of problems with semantics amounts to a total number of 14 tasks. The
final output needs to report the solution for the initial framework and as many outputs as the
number of changes. The four new tracks involve the following semantics and problems.
Remark. Tasks in dynamic tracks are invoked by appending “D” at the end of the intended

task: for instance, EE-σ-D points to the enumeration task with semantics σ, having as input a
dynamic AF.

5 Input File Formats

Each benchmark instance is provided in two different file formats: trivial graph format (tgf) and
aspartix format (apx). In the following we present the AF F = (A,→) where A = {a1, a2, a3}
and →= {(a1, a2), (a2, a3), (a2, a1)} in each of these formats.

5.1 Trivial Graph Format

See http://en.wikipedia.org/wiki/Trivial_Graph_Format. In the following we will refer
to the file containing this instance by myFile.tgf.

4

http://en.wikipedia.org/wiki/Trivial_Graph_Format

1

2

3

#

1 2

2 3

2 1

5.2 Aspartix Format

See (Egly et al., 2010). In the following we will refer to the file containing this instance by
myFile.apx.

arg(a1).

arg(a2).

arg(a3).

att(a1,a2).

att(a2,a3).

att(a2,a1).

5.3 Dynamic Track: Format of the File with Changes

For each (dynamic) problem instance, a solver requires to take as input two files: the starting
framework (either in apx or tgf format) and a text file with a list of changes to be applied
to it. The file with changes has to report a list of modifications (one per line) over the initial
framework. The format of the file with changes has to follow the same format of the original
file (either in apxm or tgfm format, see in the following of this section). Let us introduce an
example in apx (Section 5.2).

Example 5.1. The starting framework is provided in full. For instance, it can be myFile.apx:

arg(a1).

arg(a2).

arg(a3).

att(a1,a2).

att(a2,a3).

The second file is a text file containing the list of modifications to be sequentially performed
on the starting file, one after another. The name of this file has to be the same as the starting
framework, with extension .apxm instead of .apx. For this example, myFile.apxm is:

+att(a3,a2).

-att(a1,a2).

+att(a1,a3).

Applying these changes over the initial file corresponds in practice to three more full frame-
works (besides the initial one), where the first one is:

arg(a1).

arg(a2).

5

arg(a3).

att(a1,a2).

att(a2,a3).

att(a3,a2).

The second framework is:

arg(a1).

arg(a2).

arg(a3).

att(a2,a3).

att(a3,a2).

The third framework is:

arg(a1).

arg(a2).

arg(a3).

att(a2,a3).

att(a3,a2).

att(a1,a3).

We propose a second example by using the same exact framework expressed in the tgf format
(see Section 5.1). The initial framework is here called myFile.tgf:

Example 5.2. 1
2

3

#

1 2

2 3

The text file with modification needs to have the same name of the the initial framework, with
suffix .tgfm instead of .tgf. Hence, in this case, myFile.tgfm:

+3 2

-1 2

+1 3

Even in this case, applying these changes over the initial file corresponds in practice to three
more full frameworks (besides the initial one), where the first one is:

1

2

3

#

1 2

2 3

3 2

The second framework is:

6

1

2

3

#

2 3

3 2

The third framework is:

1

2

3

#

2 3

3 2

1 3

Remark 1. During these modifications, attacks have to be added only between existing
arguments: no new argument can be introduced. In case all the attacks connected to an
argument are removed, such argument is not to be removed from the framework.

Remark 2. Benchmarks and generators need to provide both the initial framework and the
modification file for each instance. For each initial framework, a modification file with at least
15 attack additions/deletions is required to be submitted/generated.

If a modification file has n changes (one per text line), a solver has to run n different problems
by applying such modifications in sequence (from the top of the file). Please do not consider n
as fixed, but just continue solving problems until there are no more modifications (i.e., lines) to
apply.

6 Output Format

In the following two subsections we describe the format that the output need to follow, for both
classical and dynamic tracks.

6.1 Classical Tracks

Solvers must write the result to standard output exactly in the format described below.

• DC-σ for σ ∈ {CO,PR,ST,SST,STG,GR, ID}:
The output must be either

YES

expressing that the queried argument is credulously accepted in the given AF under σ, or

NO

if the queried argument is not credulously accepted in the given AF under σ.

7

• DS-σ for σ ∈ {CO,PR,ST,SST,STG}:
The output must be either

YES

expressing that the queried argument is skeptically accepted in the given AF under σ, or

NO

if the queried argument is not skeptically accepted in the given AF under σ.

• SE-σ for σ ∈ {CO,PR,ST,SST,STG,GR, ID}:
The output must be of the form

[a1,a3,a6]

expressing that {a1, a3, a6} is a σ-extension of the given AF, or

NO

expressing that there does not exist a σ-extension of the given AF.

• EE-σ for σ ∈ {CO,PR,ST,SST,STG}:
The output must be of the form

[

[a1,a2]

[a1,a3]

[a2,a3]

]

expressing that the set of σ-extensions of the given AF is exactly {{a1, a2}, {a1, a3}, {a2, a3}},
or

[]

expressing that there does not exist a σ-extension of the given AF. Note that if the empty
set is the only σ-extension of the given AF, the output is required to be:

[

[]

]

White spaces (but not new line carriage (\n)) are ignored.

8

6.2 Dynamic Tracks

Concerning dynamic tracks, all the answers are in the form of a list where the first element
represents the solution of the required task on the initial framework; each following element in
this list is the answer returned on the (i+1)th framework obtained by sequentially applying the
first i changes in the modification file (see Section 5.3): i ∈ [1..n] and n is the total number of
changes in the modification file.

• DC-σ for σ ∈ {CO,PR,ST,GR}:
The output must be a list of YES or NO. For instance, considering the files in Example 5.1
and the DC-CO task checking argument a1, the answer needs to be:

[YES, YES, YES, YES]

• DS-σ for σ ∈ {CO,PR,ST}:
The output must be a list of YES or NO. For instance, considering the files in Example 5.1
and the DC-CO task checking argument a1, the answer needs to be:

[YES, YES, YES, YES]

• SE-σ for σ ∈ {CO,PR,ST,GR}: The output must be a list of extensions. For instance,
considering the files in Example 5.1 and the SE-CO task, the answer needs to be:

[

[a1,a3]

[a1,a3]

[a1]

[a1,a2]

]

An element in the list can be [] if there does not exist a σ-extension in the corresponding
AF.

• EE-σ for σ ∈ {CO,PR,ST}:
The output must be a list of lists of extensions (i.e., the enumeration for each of the
considered frameworks). For instance, considering the files in Example 5.1 and the EE-
CO task, the answer needs to be:

[

[

[a1,a3]

]

[

[a1,a3]

]

[

[a1]

[a1,a3]

9

[a1,a2]

]

[

[a1,a2]

]

]

Note that if the empty set is the only σ-extension of one of the given AF, the output is
required to be

[

[

]

]

for that framework.

7 Solver Interface

The single executable of a solver should be runnable from a command line and must provide
the following behavior (let solver be the filename of the executable. The following example
commands show the case a solver already implements the required interface2. Your solver must
be executed by docker run ... command line, for docker commands please refer to the link
in Section 2):

• solver (without any parameters)
Prints author and version information of the solver on standard output.
Example:

user$ solver

MySolver v1.0

John Smith

user$ _

• solver --formats

Prints the supported formats of the solver in the form

[supportedFormat1,supportedFormat2, ..., supportedFormatN]

The possible values for each supported format are tgf, apx.
Example:

user$ solver --formats

[tgf,apx]

user$ _

• solver --problems

Prints the supported computational problems (i.e., tasks) in the form

2In case your solver does not abide by the syntax, you can use the script generic-interface-2019.sh file in
conarg dir.zip as an interface to the solver.

10

[supportedProblem1,supportedProblem2, ..., supportedProblemN]

The possible values are DC-CO, DC-PR, DC-ST, DC-SST, DC-STG, DC-GR, DC-ID, DS-CO,
DS-PR, DS-ST, DS-SST, DS-STG, SE-CO, SE-PR, SE-ST, SE-SST, SE-STG, SE-GR, SE-ID,
EE-CO, EE-PR, EE-ST, EE-SST, EE-STG, and values for dynamic tracks are DC-CO-D, DS-CO-D,
SE-CO-D, EE-CO-D, DC-PR-D, DS-PR-D, SE-PR-D, EE-PR-D, DC-ST-D, DS-ST-D, SE-ST-D,
EE-ST-D, DC-GR-D, SE-GR-D.
Example:

user$ solver --problems

[DC-CO,DS-CO,EE-CO,SE-ST]

user$ _

• solver -p <task> -f <file> -fo <fileformat> [-a <additional parameter>]

Solves the given classical problem on the argumentation framework specified by the given
file (represented in the given file format) and prints out the result. More specifically:

– solver -p DC-<semantics> -f <file> -fo <fileformat>

-a <additional parameter>

Solves the problem of deciding whether an argument (given as additional parameter)
is credulously inferred and prints out either YES (if it is credulously inferred) or NO

(if it is not credulously inferred).
Example:

user$ solver -p DC-CO -f myFile.apx -fo apx -a a1

YES

user$ _

– solver -p DS-<semantics> -f <file> -fo <fileformat>

-a <additional parameter>

Solves the problem of deciding whether an argument (given as additional parameter)
is skeptically inferred and prints out either YES (if it is credulously inferred) or NO (if
it is not credulously inferred).
Example:

user$ solver -p DC-ST -f myFile.apx -fo apx -a a2

NO

user$ _

– solver -p SE-<semantics> -f <file> -fo <fileformat>

Returns one extension wrt. the given semantics in the format [A1,A2,...,AN] (no
further parameters needed).
Example:

user$ solver -p SE-PR -f myFile.tgf -fo tgf

[a1,a3]

user$ _

If there does not exist any extension wrt. the given semantics (which can be the case
for stable semantics) then the output NO is expected by the solver.
Example:

user$ solver -p SE-ST -f anotherFile.tgf -fo tgf

NO

user$ _

11

– solver -p EE-<semantics> -f <file> -fo <fileformat>

Enumerates all sets that are extensions wrt. the given semantics in the format
[[A1,A2,...,AN],[B1,B2,...,BM],..., [Z1,Z2,...,ZN]] (no further parameters
needed).
Example:

user$ solver -p EE-PR -f myFile.apx -fo apx

[

[a1,a3]

[a2]

]

user$ _

• solver -p <task> -f <file> -m <modification file>

-fo <fileformat> [-a <additional parameter>]

Solves the given dynamic problem on the argumentation framework specified by the given
file (represented in the given file format) and the file with the list of sequential modifica-
tions; finally, it prints out the result. More specifically:

– solver -p DC-<semantics>-D -f <file> -m <modification file>

-fo <fileformat> -a <additional parameter>

Solves the problem of deciding whether an argument (given as additional parameter)
is credulously inferred and prints out either YES (if it is credulously inferred) or NO (if
it is not credulously inferred) for the initial framework and each of the frameworks
obtained by sequentially applying modifications.
Example:

user$ solver -p DC-CO-D -f myFile.apx -m myFile_Modapx.apxm

-fo apx -a a1

[YES, YES, NO, YES]

user$ _

– solver -p EE-<semantics>-D -f <file> -m <modification file>

-fo <fileformat>

Enumerates all the sets that are extensions according to the given semantics and
prints out the result following the output format in Section 6.2.
Example:

user$ solver -p EE-PR-D -f myFile.apx -m myFile_Modapx.apxm -fo

apx

[

[

[a1,a3]

[a2]

]

[

[a1]

[a3]

]

]

user$ _

12

The formats for the modification files is given in Section 5.3.

Each solver has to support at least one file format. It is ensured that each solver is only
called with file formats and problems he supports (the behavior of a solver when called with
unsupported parameters is undefined).

References

G. Alfano, S. Greco, and F. Parisi. Efficient computation of extensions for dynamic abstract
argumentation frameworks: An incremental approach. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI, pages 49–55. ijcai.org, 2017.

P. Baroni, M. Caminada, and M. Giacomin. An introduction to argumentation semantics. The
Knowledge Engineering Review, 26(4):365–410, 2011.

P. Baroni, M. Giacomin, and B. Liao. On topology-related properties of abstract argumentation
semantics. A correction and extension to dynamics of argumentation systems: A division-
based method. Artif. Intell., 212:104–115, 2014.

R. Baumann and G. Brewka. Expanding argumentation frameworks: Enforcing and monotonic-
ity results. In Computational Models of Argument (COMMA), volume 216 of Frontiers in
Artificial Intelligence and Applications, pages 75–86. IOS Press, 2010.

S. Bistarelli, F. Santini, and C. Taticchi. On looking for invariant operators in argumentation
semantics. In Proceedings of the Thirty-First International Florida Artificial Intelligence
Research Society Conference, FLAIRS, pages 537–540. AAAI Press, 2018.

G. Boella, S. Kaci, and L. W. N. van der Torre. Dynamics in argumentation with single
extensions: Abstraction principles and the grounded extension. In Symbolic and Quantitative
Approaches to Reasoning with Uncertainty ECSQARU, volume 5590 of LNCS, pages 107–118.
Springer, 2009.

Martin Caminada, Walter Alexandre Carnielli, and Paul E. Dunne. Semi-stable semantics. J.
Log. Comput., 22(5):1207–1254, 2012.

C. Cayrol, F. de Saint-Cyr, and M.-C. Lagasquie-Schiex. Change in abstract argumentation
frameworks: Adding an argument. J. Artif. Intell. Res., 38:49–84, 2010.

Phan Minh Dung, Paolo Mancarella, and Francesca Toni. Computing ideal sceptical argumen-
tation. Artificial Intelligence, 171(10–15):642–674, 2007.

Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77(2):321–358,
1995.

U. Egly, S. A. Gaggl, and S. Woltran. Answer-set programming encodings for argumentation
frameworks. Argument & Computation, 1(2):147–177, 2010.

N. Kökciyan, N. Yaglikci, and P. Yolum. Argumentation for resolving privacy disputes in online
social networks: (extended abstract). In Proceedings of the 2016 International Conference on
Autonomous Agents & Multiagent Systems, pages 1361–1362. ACM, 2016.

13

Bart Verheij. Two approaches to dialectical argumentation: admissible sets and argumentation
stages. In Proceedings of the 8th Dutch Conference on Artificial Intelligence (NAIC’96), pages
357–368, 1996.

Y. Xu and C. Cayrol. The matrix approach for abstract argumentation frameworks. In Theory
and Applications of Formal Argumentation TAFA, volume 9524 of LNCS, pages 243–259.
Springer, 2015.

14

	Abstract Argumentation
	Dockerization
	Dynamic Frameworks
	Computational problems
	Classical Tracks
	Dynamic Tracks

	Input File Formats
	Trivial Graph Format
	Aspartix Format
	Dynamic Track: Format of the File with Changes

	Output Format
	Classical Tracks
	Dynamic Tracks

	Solver Interface

