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Abstract

We shortly describe the µ-toksia system, a purely SAT-based implementation partici-
pating in the 3rd International Competition on Computational Models of Argumentation
(ICCMA 2019), supporting both the classical and dynamic reasoning tasks of ICCMA
2019.

1 The µ-toksia System

The µ-toksia system is a purely SAT-based implementation supporting both the classical [5]
and dynamic reasoning tasks of ICCMA 2019. By “purely a SAT-based implementation” we
mean that essentially all reasoning by the system is performed by calls to a Boolean satisfiability
(SAT) solver —including polynomial-time computations, such as the grounded semantics as well
as incremental checks for persistence of (non-)solutions under changes in the dynamic tasks.
In addition, the system makes use of incremental SAT solving throughout the implementation.
This means that a SAT solver is instantiated only once during a single run of the program,
allowing for maintaining the state of the solver from one call to another.

In more detail, the µ-toksia system implements SAT-based algorithms for handling the
dynamic tasks in the dynamic track. This is achieved by adapting the standard SAT encodings
for classical tasks [3] for the dynamic track as follows. As in the classical case, we have variables
xa for each a ∈ A, with xa = > iff a is included in the σ-extension encoded by the formula. In
addition, for each change ±(a, b), we condition the relevant parts of the SAT encoding with a
fresh variable ra,b, interpreting ra,b = > as including the attack (a, b) in the attack structure.
This allows for employing incremental SAT solving for the dynamic track, using the assumptions
interface of the SAT solver over the ra,b variables.

Additionally, we use the following optimizations for the dynamic track.

• If the exact same attack structure has already been encountered before, we output the
answer obtained during that iteration.

• If at the start of an iteration, the previous SAT solver call was satisfiable, we check whether
the assignment is still a valid assignment under the new assumptions, e.g., whether the
extension obtained previously is still an extension for the new AF. This is achieved by
including the extension as assumptions in a SAT call.

• If at the start of an iteration, the previous SAT solver call was unsatisfiable, we check
whether the final conflict clause (unsatisfiable core) expressed in terms of the assumption
variables (i.e., the attack structure) still evaluates to false given the current assumptions.

Semantics-dependent details are described in the following.

• Grounded (GR). As noted in [7], the grounded extension can be obtained by performing
unit propagation on the SAT encoding for complete semantics. We implemented this
approach instead of a dedicated polynomial-time algorithm. For acceptance, we simply
check whether the positive literal corresponding to the argument has been propagated.
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• Complete (CO) and stable (ST). Finding an extension under these semantics for a given
AF is employed with a single SAT solver call. Similarly, credulous and skeptical acceptance
can be decided by adding the unit clause (xa) or (¬xa) to the SAT encoding. Enumeration
is implemented by adding a clause C blocking the current variable assignment of the
SAT solver after each extension found. In the dynamic case, we instead add the clause
si → C, where si is a new Boolean variable with the meaning “we are at iteration i”.
During iteration i, we add the literals ¬s1, . . . ,¬si−1, si as assumptions. (We note that
skeptical acceptance under complete coincides with credulous acceptance under grounded,
the system makes use of this.)

• Preferred (PR), semi-stable (SST), and stage (STG). For maximal semantics with higher
computational complexity, a counterexample-guided abstraction refinement (CEGAR)
procedure has been implemented, in the style of the AF solver CEGARTIX [6]. For
the dynamic track (preferred only), clauses blocking subsets of the current extension are
conditioned with si variables, as in the previous case. (We note that credulous acceptance
under preferred coincides with credulous acceptance under complete. Additionally, if a
stable extension exists, stable, semi-stable, and stage semantics coincide. The system
makes use of these observations.)

• Ideal (ID). As noted in [4], the ideal extension is the maximal admissible extension which
is not attacked by any admissible extension. We implemented this by computing the
union of complete extensions with iterative SAT calls, removing the arguments which
are attacked by an argument in the union, and then iteratively maximizing a complete
extension within this set, again with iterative SAT.

µ-toksia includes Glucose (version 4.1) [2] as the core SAT engine. µ-toksia has been compiled
using GCC (version 7.3.0) with optimization flag -O3. Additionally, Glucose has been compiled
with incremental mode [1] enabled.

2 Supported Tasks and Semantics

µ-toksia supports all dynamic tasks as well as all classical tasks (by simply dropping the ra,b
variables) of ICCMA 2019. That is, the following classical tasks are supported:

• credulous acceptance (DC-σ),

• skeptical acceptance (DS-σ),

• finding one extension (SE-σ),

• enumerating extensions (EE-σ),

under the semantics σ ∈ {CO,PR,ST,SST,STG,GR, ID}, and the following dynamic tasks:

• credulous acceptance (DC-σ-D),

• skeptical acceptance (DS-σ-D),

• finding one extension (SE-σ-D),

• enumerating extensions (EE-σ-D),

under σ ∈ {CO,PR,ST,GR}.
Both .apx and .tgf formats for the input AF and the modification file are supported.
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3 Docker Repository

The solver binary has been pushed to the Docker repository andreasniskanen/iccma2019.
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