
The pyglaf argumentation reasoner

Mario Alviano

Department of Mathematics and Computer Science, University of Calabria, Italy
alviano@mat.unical.it

Abstract

The pyglaf reasoner takes advantage of circumscription to solve computational prob-
lems of abstract argumentation frameworks. In fact, many of these problems are reduced
to circumscription by means of linear encodings, and a few others are solved by means of
a sequence of calls to an oracle for circumscription. Within pyglaf, Python is used to
build the encodings and to control the execution of the external circumscription solver,
which extends the SAT solver glucose and implements algorithms taking advantage of
unsatisfiable core analysis and incremental computation.

1 Introduction

Circumscription [7] is a nonmonotonic logic formalizing common sense reasoning by means
of a second order semantics, which essentially enforces to minimize the extension of some
predicates. With a little abuse on the definition of circumscription, the minimization can
be imposed on a set of literals, so that a set of negative literals can be used to encode a
maximization objective function. Since many semantics of abstract argumentation frameworks
are based on a preference relation that essentially amount to inclusion relationships, pyglaf
(http://alviano.com/software/pyglaf/) uses circumscription as a target language to solve
computational problems of abstract argumentation frameworks.

pyglaf [3] is implemented in Python and uses circumscriptino (http://alviano.com/
software/circumscriptino/), a circumscription solver extending the SAT solver glucose
[5]. Linear reductions are used for all semantics [1]. For the ideal extension, the reduction
requires the union of all admissible extensions of the input graph; such a set is computed
by means of iterative calls to circumscriptino. The communication between pyglaf and
circumscriptino is handled in the simplest possible way, that is, via stream processing. This
design choice is principally motivated by the fact that the communication is often minimal,
limited to a single invocation of the circumscription solver.

The Docker container is malvi/pyglaf. All problems from ICCMA’17 are supported.

2 Circumscription

Let A be a fixed, countable set of atoms including ⊥. A literal is an atom possibly preceded
by the connective ¬. For a literal `, let ` denote its complementary literal, that is, p = ¬p and
¬p = p for all p ∈ A; for a set L of literals, let L be {` | ` ∈ L}. Formulas are defined as
usual by combining atoms and the connectives ¬, ∧, ∨, →, ↔. A theory is a set T of formulas
including ¬⊥; the set of atoms occurring in T is denoted by atoms(T). An assignment is a set
A of literals such that A ∩ A = ∅. An interpretation for a theory T is an assignment I such
that (I ∪ I) ∩ A = atoms(T). Relation |= is defined as usual. I is a model of a theory T if
I |= T . Let models(T) denote the set of models of T .

Circumscription applies to a theory T and a set P of literals subject to minimization.
Formally, relation ≤P is defined as follows: for I , J interpretations of T , I ≤P J if I∩P ⊆ J∩P .

http://alviano.com/software/pyglaf/
http://alviano.com/software/circumscriptino/
http://alviano.com/software/circumscriptino/
malvi/pyglaf

The pyglaf argumentation reasoner Mario Alviano

I ∈ models(T) is a preferred model of T with respect to ≤P if there is no J ∈ models(T) such
that I 6≤P J and J ≤P I . Let CIRC(T ,P) denote the set of preferred models of T with
respect to ≤P .

3 From Argumentation Frameworks to Circumscription

An abstract argumentation framework (AF) is a directed graph G whose nodes arg(G) are
arguments, and whose arcs att(G) represent an attack relation. An extension E is a set of
arguments. The range of E in G is E+

G := E ∪{x | ∃ yx ∈ att(G) with y ∈ E}. In the following,
the semantics of ICCMA’17 are characterized by means of circumscription.

For each argument x , an atom ax is possibly introduced to represent that x is attacked
by some argument that belongs to the computed extension E , and an atom rx is possibly
introduced to enforce that x belongs to the range E+

G :

attacked(G) :=

ax ↔
∨

yx∈att(G)

y

∣∣∣∣∣∣ x ∈ arg(G)

 (1)

range(G) :=

rx → x ∨
∨

yx∈att(G)

y

∣∣∣∣∣∣ x ∈ arg(G)

 (2)

The following set of formulas characterize semantics not based on preferences:

conflict-free(G) := {¬⊥} ∪ {¬x ∨ ¬y | xy ∈ att(G)} (3)

admissible(G) := conflict-free(G)∪attacked(G) ∪ {x → ay | yx ∈ att(G)} (4)

complete(G) := admissible(G) ∪

 ∧

yx∈att(G)

ay

→ x

∣∣∣∣∣∣ x ∈ arg(G)

 (5)

stable(G) := complete(G) ∪ range(G) ∪ {rx | x ∈ arg(G)} (6)

Note that in (4) truth of an argument x implies that all arguments attacking x are actually
attacked by some true argument. In (5), instead, whenever all attackers of an argument x are
attacked by some true argument, argument x is forced to be true. Finally, in (6) all atoms of
the form rx are forced to be true, so that the range of the computed extension has to cover all
arguments.

The ideal semantic is defined as follows (Proposition 3.6 by [6]): Let X be the set of
admissible extensions of G that are not attacked by any admissible extensions, that is, X :=
{E ∈ models(admissible(G)) | @E ′ ∈ models(admissible(G)) such that yx ∈ att(G), x ∈
E , y ∈ E ′}. E is the ideal extension of G if E ∈ X , and there is no E ′ ∈ X such that E ′ ⊇ E .

All semantics of ICCMA’19 are characterized in circumscription as follows:

co(G) := CIRC(complete(G),∅) (7)

st(G) := CIRC(stable(G),∅) (8)

gr(G) := CIRC(complete(G), arg(G)) (9)

pr(G) := CIRC(complete(G), arg(G)) (10)

sst(G) := CIRC(complete(G) ∪ range(G), {¬rx | x ∈ arg(G)}) (11)

stg(G) := CIRC(conflict-free(G) ∪ range(G), {¬rx | x ∈ arg(G)}) (12)

2

The pyglaf argumentation reasoner Mario Alviano

id(G ,U) := CIRC(admissible(G) ∪ arg(G) \Y , Y) (13)

where in (13) U is the union of all admissible extensions of G , and Y is U \ {x | ∃ yx ∈
att(G), y ∈ U }.

3.1 Dynamic Track

An instance of the dynamic track can be represented by a triple (G , f ,n), where G is a graph,
f : att(G) → 2[0..n] is a function, and n ≥ 0. Intuitively, for all i ∈ [0..n], the i -th graph
has nodes arg(G) and arcs {xy ∈ att(G) | i ∈ f (xy)}. In order to maintain the translation to
circumscription compact, additional atoms are introduced: xy to represent that arc xy is present
in the processed graph; exy to represent that the attack xy is enabled, that is, xy is present and
x belongs to the computed extension; dxy to represent that the attack xy is disabled, that is,
either xy is not present or x is attacked by some argument in the computed extension.

Formulas (1)–(6) are replaced by the following formulas:

attackedD(G) := {exy ↔ xy ∧ x | xy ∈ att(G)} ∪

ax ↔
∨

yx∈att(G)

eyx

∣∣∣∣∣∣ x ∈ arg(G)

 (14)

rangeD(G) :=

rx → x ∨
∨

yx∈att(G)

eyx

∣∣∣∣∣∣ x ∈ arg(G)

 (15)

c-freeD(G) := {¬⊥} ∪ {xy → ¬x ∨ ¬y | xy ∈ att(G)} (16)

admissibleD(G) := c-freeD(G)∪attackedD(G) ∪ {yx ∧ x → ay | yx ∈ att(G)} (17)

completeD(G) := admissibleD(G) ∪ {dxy ↔ ¬xy ∨ ax | xy ∈ att(G)}

∪

 ∧

yx∈att(G)

dyx

→ x

∣∣∣∣∣∣ x ∈ arg(G)

 (18)

stableD(G) := completeD(G) ∪ rangeD(G) ∪ {rx | x ∈ arg(G)} (19)

Accordingly, theories (7)–(10) are replaced by the following theories:

co(G , f , i) := CIRC(completeD(G) ∪ {xy ∈ att(G) | i ∈ f (xy)},∅) (20)

st(G , f , i) := CIRC(stableD(G) ∪ {xy ∈ att(G) | i ∈ f (xy)},∅) (21)

gr(G , f , i) := CIRC(completeD(G) ∪ {xy ∈ att(G) | i ∈ f (xy)}, arg(G)) (22)

pr(G , f , i) := CIRC(completeD(G) ∪ {xy ∈ att(G) | i ∈ f (xy)}, arg(G)) (23)

4 Implementation

Abstract argumentation frameworks can be encoded in trivial graph format (tgf) as well as
in aspartix format (apx). The following data structures are populated during the parsing of
the input graph G : a list arg of the arguments in arg(G); a dictionary argToIdx, mapping
each argument x to its position in arg; a dictionary att, mapping each argument x to the set
{y | xy ∈ att(G)}; a dictionary attR, mapping each argument x to the set {y | yx ∈ att(G)}.
Within these data structures, theories (7)–(13) are constructed in amortized linear time. Single

3

The pyglaf argumentation reasoner Mario Alviano

extension computation and extension enumeration is then demanded to the underlying circum-
scription solver [2].

The union U of all admissible extensions is computed by iteratively asking to circum-
scriptino to compute an admissible extension that maximize the accepted arguments not
already in U , so to expand U as much as possible at each iteration.

For complete, stable, and preferred extensions, credulous acceptance is addressed by check-
ing consistency of the theory extended with the query argument. Similarly, skeptical accep-
tance is addressed by adding the complement of the query argument for complete, and stable
extensions. Grounded and ideal extensions are unique, and therefore credulous acceptance is
addressed by checking the presence of the query argument in the computed extension. Actually,
for the ideal extension, a negative answer is possibly produced already if the query argument
is not part of the union of all admissible extensions. The remaining acceptance problems are
addressed by a recent algorithm for query answering in circumscription [4]. In a nutshell, given
a query atom q and a circuscribed theory, the computational problem amounts to search for a
model of the circumscribed theory that contains the query atom. The algorithm implemented
in circumscriptino searches for a classical model of the theory that contains the query atom,
and checks that no more preferred model not containing the query atom exists. In this way,
queries are possibly answered without computing any optimal model.

Concerning the Dynamic Track, the theories from Section 3.1 are optimized by avoiding
additional atoms for arcs that are present in all graphs of the instance in input. Moreover,
circumscriptino is kept online for the full computation, and instructed to add clauses and
solve a computational problem with a given set of assumptions. In this way, each subsequent
graph is processed incrementally, taking advantage of the knowledge discovered by the solver
while processing the previous graphs. As a further optimization, when an arc xy is added at
step i and not removed in any subsequent step, the unit clause xy is added to circumscriptino
before processing the i -th graph. Analogously, when xy is removed at step i and not added in
any subsequent step, ¬xy is added before processing the i -th graph.

References

[1] Mario Alviano. Ingredients of the argumentation reasoner pyglaf: Python, circumscription, and
glucose to taste. In Marco Maratea and Ivan Serina, editors, RCRA 2017, volume 2011 of CEUR
Workshop Proceedings, pages 1–16. CEUR-WS.org, 2017.

[2] Mario Alviano. Model enumeration in propositional circumscription via unsatisfiable core analysis.
TPLP, 17(5-6):708–725, 2017.

[3] Mario Alviano. The pyglaf argumentation reasoner. In Ricardo Rocha, Tran Cao Son, Christopher
Mears, and Neda Saeedloei, editors, TC of ICLP 2017, volume 58 of OASICS, pages 2:1–2:3. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[4] Mario Alviano. Query answering in propositional circumscription. In Jérôme Lang, editor, Proceed-
ings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018,
July 13-19, 2018, Stockholm, Sweden., pages 1669–1675. ijcai.org, 2018.

[5] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT solvers.
In Craig Boutilier, editor, IJCAI 2009, Proceedings of the 21st International Joint Conference on
Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009, pages 399–404, 2009.

[6] Martin Caminada. A labelling approach for ideal and stage semantics. Argument & Computation,
2(1):1–21, 2011.

[7] John McCarthy. Circumscription - A form of non-monotonic reasoning. Artif. Intell., 13(1-2):27–39,
1980.

4

	Introduction
	Circumscription
	From Argumentation Frameworks to Circumscription
	Dynamic Track

	Implementation

