
ASPARTIX-V19 - System Description for ICCMA’19

Wolfgang Dvořák, Anna Rapberger, Johannes P. Wallner, and Stefan Woltran

Institute of Logic and Computation, TU Wien, Vienna, Austria
{dvorak,arapberg,wallner,woltran}@dbai.tuwien.ac.at

Abstract

In this solver description we present ASPARTIX-V, in its 2019 edition, which par-
ticipates in the International Competition on Computational Models of Argumentation
(ICCMA) 2019. ASPARTIX-V is capable of solving all classical (static) reasoning tasks
part of ICCMA’19 and extends the ASPARTIX suite of systems by incorporation of re-
cent ASP language constructs (e.g. conditional literals), domain heuristics within ASP,
and multi-shot methods. In this light we partially deviate from an earlier focus on mono-
lithic approaches (i.e., one-shot solving via a single ASP encoding) to further enhance
performance.

1 Solver Description

In this paper we describe ASPARTIX-V (Answer Set Programming Argumentation Reason-
ing Tool - Vienna) in its 2019 edition. ASPARTIX-V19 solves several reasoning tasks on
argumentation frameworks (AFs) [1] and is based on earlier versions of ASPARTIX and its
derivatives [4, 2, 3, 6, 10]. Given an AF as input, in the format of apx, ASPARTIX-V dele-
gates the main reasoning to an answer set programming (ASP) solver (e.g. [8]), with answer
set programs encoding the argumentation semantics and reasoning tasks. The basic workflow
is shown in Figure 1, i.e., the AF is given in apx format (facts in the ASP language), and the
AF semantics and reasoning tasks are encoded via ASP rules, possibly utilizing further ASP
language constructs. In the next section we highlight specifics of the current version and in
particular differences to prior versions. ASPARTIX, and its derivatives, are available online
under

https://www.dbai.tuwien.ac.at/research/argumentation/aspartix/

ASP-solver

arg(a).
arg(b).
att(a,b).

input

ASP encoding

[[a]]

resultASPARTIX-V

Figure 1: Basic workflow of ASPARTIX-V

2 Differences to earlier Versions

In this competition version of the ASPARTIX system we deviate from classical ASPARTIX
design virtues. First, while traditional ASPARTIX encodings are modular in the sense that

https://www.dbai.tuwien.ac.at/research/argumentation/aspartix/


ASPARTIX-V19 Dvořák, Rapberger, Wallner, and Woltran

fixed encodings for semantics can be combined with the generic encodings of reasoning tasks,
we use semantics encodings specific to a reasoning task. Second, when appropriate we apply
multi-shot methods for reasoning which is in contrast to the earlier focus on so-called monolithic
encodings, where one uses a single ASP-encoding and runs the solver only once (as illustrated
in Figure 1). Third we make use of advanced features of the ASP-language, and utilize clingo
v5.3.0 and v4.4.0 1[8].

Next, we list and briefly discuss some of the ASP-techniques novel to the ASPARTIX system.
First, we exploit the concept of conditional literals [7, Section 3.1.11], which has first been
applied for ASP-encodings of argumentation semantics in [6]. For example we simplified the
encoding of grounded semantics (cf. Listing 1). Moreover, conditional literals enable us to give
ASPARTIX style encodings of the translations from AF semantics to ASP semantics provided
in [11]. Second, we exploit clingo domain heuristics [9] (see also [7, Chapter 10]), in order to
compute subset-maximal extensions while only specifying constraints for the base semantics [5].

Listing 1: Encoding for grounded semantics (using conditional literals)

in(X) ← arg(X), defeated(Y) : att(Y,X).
defeated(X) ← arg(X), in(Y), att(Y,X).

3 Capabilities of the solver

ASPARTIX-V19 supports all the standard tasks of ICCMA 2019 but does not support the dy-
namic settings of the special track. That is, ASPARTIX-V19 supports complete (CO), preferred
(PR), stable (ST), semi-stable (SST), stage (STG), grounded (GR), and ideal (ID) semantics.
For each of the semantics it supports the following reasoning tasks.

• Some Extension (SE): Given an AFs, determine some extension

• Enumerate Extensions (EE): Given an AFs, determine all extensions

• Decide Credulous Acceptance (DC): Given an AFs and some argument, decide whether
the given argument is credulously inferred

• Decide Skeptical Acceptance (DS): Given an AFs and some argument, decide whether the
given argument is skeptically inferred

The docker of the competition version ASPARTIX-V19 is available at the following link:

https://hub.docker.com/r/aspartix19/aspartix19-repo

4 Implementation Details

When not stated otherwise, for a supported semantics we provide an ASP-encoding such that
when combined with an AF in the apx format the answer-sets of the program are in a one-to-one
correspondence with the extensions of the AF. Given an answer-set of such an encoding the
corresponding extension is given by the in(·) predicate, i.e., an argument a is in the extensions
iff in(a) is in the answer-set. With such an encoding we can exploit a standard ASP-solver
to: compute some extension (SE) by computing an answer-set; enumerate all extensions (EE)

1https://potassco.org/

2

https://hub.docker.com/r/aspartix19/aspartix19-repo
https://potassco.org/


ASPARTIX-V19 Dvořák, Rapberger, Wallner, and Woltran

by enumerating all answer-sets; decide credulous acceptance (DC) of an argument a by adding
the constraint :- in(a) to the program and testing whether the program is satisfiable, i.e., a
is credulously accepted if there is at least one answer set; and decide skeptical acceptance (DS)
of an argument a by adding the constraint :- not in(a) to the program and testing whether
the program is unsatisfiable, i.e., a is skeptically accepted if there is no answer set;.

For the implementation of some semantics and reasoning task we deviate from the above
described standard way of ASPARTIX. In the following we briefly describe these modifications:

For credulous and skeptical semantics with complete, preferred, grounded, and ideal seman-
tics we do not need to consider the whole framework but only those arguments that have a
directed path to the query argument (notice that this does not hold true for stable, semi-stable
and stage semantics). That is, we perform pre-processing on the given AF that removes ar-
guments without a directed path to the queried argument before starting the reasoning with
ASP-solver. We do so for the reasoning tasks DC-CO (DC-PR), DC-ID, and DS-PR.

For computing the ideal extension (SE-ID, EE-ID) we follow a two-shot strategy. That is, we
first use an encoding for complete semantics and the brave reasoning mode of clingo to compute
all arguments that are credulously accepted/attacked w.r.t. preferred semantics. Second, we
use the outcome of the first call together with an encoding that computes a fixed-point which
corresponds to the ideal extension. For reasoning with ideal semantics (DC-ID, DS-ID) we use
an encoding for ideal sets and perform credulous reasoning on ideal sets as described in the first
paragraph of this section.

Clingo provides an option to add user-specific domain heuristic to the ASP program which
in particular allow to select the answer-sets that are subset-maximal/minimal w.r.t. a specified
predicate. We use such heuristics for preferred semantics (EE-PR, SE-PR) by using an encoding
for complete semantics and then identifying the subset-maximal answer-sets w.r.t. the in(·)
predicate. Moreover, we use domain heuristics to compute the subset-maximal ranges2 of
complete and conflict-free sets, which we exploited for computing some semi-stable (SE-SST) or
stage extension (SE-STG). However, the domain heuristics only return one witnessing answer-
set for each maxima and thus this technique is not directly applicable to the corresponding
enumerations tasks (we would miss some extensions if several extensions have the same range).

Semi-stable extensions correspond to those complete labellings for which the set of unde-
cided arguments is subset-minimal. For enumerating semi-stable extensions (EE-SST), multiple
answer-sets possessing the same subset-minimal set of undecided arguments can exist. In our
approach, we utilize an encoding for complete semantics extended by an undec(·) predicate
and process the answer-sets. We check whether models without undec(·) predicate have been
computed; in that case, semi-stable extensions coincide with stable extensions. In the other
case, we compute all subset-minimal sets among all undecided sets using the set class in python
and return the corresponding models.

For enumerating stage extensions (EE-STG) we use a multi-shot strategy. First we use
domain heuristic to compute the maximal ranges w.r.t. naive semantics3. Second, for each
of the maximal ranges we start another ASP-encoding which computes conflict-free sets with
exactly that range (this is equivalent to computing stable extension of a restricted framework).
Each of these extensions corresponds to a different stage extension of the AF.

For reasoning with semi-stable and stage semantics (DC-SST, DS-SST, DC-STG, DS-STG)
we use a multi-shot strategy similar to that for enumerating the stage extensions. First we
use domain heuristics to compute the maximal ranges w.r.t. complete and naive semantics.

2The range of a set of arguments S is the set of arguments that are either contained in S or attacked by an
argument in S.

3Naive sets are subset-maximal conflict-free sets and as each range maximal conflict-free set is also subset-
maximal it is sufficient to only consider naive sets.

3



ASPARTIX-V19 Dvořák, Rapberger, Wallner, and Woltran

In the second step we iterate over these ranges and perform skeptical, credulous respectively,
reasoning over complete extensions, conflict-free sets respectively, with the given range. For
skeptical acceptance, we answer negatively as soon as a counterexample to a positive answer is
found when iterating the extensions; otherwise, after processing all maximal ranges we answer
with YES. Analogously, for credulous acceptance, we check in each iteration whether we can
report a positive answer; otherwise, after processing all maximal ranges, we return NO.

Acknowledgments

This work has been funded by the Austrian Science Fund (FWF): P30168-N31, W1255-N23,
and I2854.

References

[1] Phan Minh Dung. On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic
Reasoning, Logic Programming and n-Person Games. Artificial Intelligence, 77(2):321–358, 1995.

[2] Wolfgang Dvořák, Sarah A. Gaggl, Johannes P. Wallner, and Stefan Woltran. Making use of ad-
vances in answer-set programming for abstract argumentation systems. In Hans Tompits, Salvador
Abreu, Johannes Oetsch, Jörg Pührer, Dietmar Seipel, Masanobu Umeda, and Armin Wolf, edi-
tors, Proc. INAP, Revised Selected Papers, volume 7773 of Lecture Notes in Artificial Intelligence,
pages 114–133. Springer, 2013.

[3] Wolfgang Dvořák, Sarah Alice Gaggl, Thomas Linsbichler, and Johannes Peter Wallner.
Reduction-based approaches to implement Modgil’s extended argumentation frameworks. In
Thomas Eiter, Hannes Strass, Miroslaw Truszczynski, and Stefan Woltran, editors, Advances in
Knowledge Representation, Logic Programming, and Abstract Argumentation - Essays Dedicated to
Gerhard Brewka on the Occasion of His 60th Birthday, volume 9060 of Lecture Notes in Computer
Science, pages 249–264. Springer, 2015.

[4] Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran. Answer-set programming encodings for argu-
mentation frameworks. Argument & Computation, 1(2):147–177, 2010.

[5] Wolfgang Faber, Mauro Vallati, Federico Cerutti, and Massimiliano Giacomin. Enumerating pre-
ferred extensions using ASP domain heuristics: The asprmin solver. In Sanjay Modgil, Katarzyna
Budzynska, and John Lawrence, editors, Proc. COMMA, volume 305 of Frontiers in Artificial
Intelligence and Applications, pages 459–460. IOS Press, 2018.

[6] Sarah Alice Gaggl, Norbert Manthey, Alessandro Ronca, Johannes Peter Wallner, and Stefan
Woltran. Improved answer-set programming encodings for abstract argumentation. Theory and
Practice of Logic Programming, 15(4-5):434–448, 2015.

[7] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Marius Lindauer, Max Ostrowski, Javier
Romero, Torsten Schaub, and Philipp Wanko Sven Thiele. Potassco guide version 2.2.0. https:

//github.com/potassco/guide/releases/tag/v2.2.0, 2019.

[8] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Clingo = ASP +
control: Preliminary report. CoRR, abs/1405.3694, 2014.

[9] Martin Gebser, Benjamin Kaufmann, Javier Romero, Ramón Otero, Torsten Schaub, and Philipp
Wanko. Domain-specific heuristics in answer set programming. In Marie desJardins and Michael L.
Littman, editors, Proc. AAAI. AAAI Press, 2013.

[10] Alessandro Ronca, Johannes Peter Wallner, and Stefan Woltran. ASPARTIX-V: utilizing improved
ASP encodings. http://argumentationcompetition.org/2015/pdf/paper_11.pdf, 2015.

[11] Chiaki Sakama and Tjitze Rienstra. Representing argumentation frameworks in answer set pro-
gramming. Fundamenta Informaticae, 155(3):261–292, 2017.

4

https://github.com/potassco/guide/releases/tag/v2.2.0
https://github.com/potassco/guide/releases/tag/v2.2.0
http://argumentationcompetition.org/2015/pdf/paper_11.pdf

	Solver Description
	Differences to earlier Versions
	Capabilities of the solver
	Implementation Details

