
The Fourth International Competition on Computational Models of

Argumentation∗

Solver Requirements

Jean-Marie Lagniez1, Emmanuel Lonca1, Jean-Guy Mailly2, Julien Rossit2

1: CRIL, Université d’Artois & CNRS, France, {lagniez,lonca}@cril.fr
2: LIPADE, Université de Paris, France, {jean-guy.mailly, julien.rossit}@u-paris.fr

December 3, 2020

Abstract

This document contains requirements for solvers participating at ICCMA’21 [1]. In particular, this docu-
ment provides some formal background on abstract and structured (assumption-based) argumentation, a list of
computational problems considered in the competition, the input formats of benchmark instances, the expected
output format of results, and a description of the interface participating solvers are required to provide.

1 Abstract Argumentation

An abstract argumentation framework (AF) [2] is a directed graph F = 〈A,R〉, where A is the set of arguments,
and R ⊆ A × A is the attack relation. For a, b, c ∈ A, we say that a attacks b if (a, b) ∈ R. If in turn b attacks
c, then a defends c against b. Similarly, a set S ⊆ A attacks (respectively defends) an argument b if there is some
a ∈ S that attacks (respectively defends) b. For S ⊆ A a set of arguments, S+ is the set of arguments that are
attacked by S, formally S+ = {b ∈ A | ∃a ∈ S s.t. (a, b) ∈ R}. The range of S is S⊕ = S ∪ S+.

Different semantics have been defined for evaluating the acceptability of (sets of) arguments.

Definition 1. Given an AF F = 〈A,R〉, a set of arguments S ⊆ A is conflict-free iff ∀a, b ∈ S, (a, b) 6∈ R. A
conflict-free set S is admissible iff ∀a ∈ S, S defends a against all its attackers. Conflict-free and admissible sets
are respectively denoted by CF(F) and ADM(F).

Now, we formally introduce the extension-based semantics. For S ⊆ A,

• S ∈ CO(F) iff S ∈ ADM(F) and ∀a ∈ A that is defended by S, a ∈ S;

• S ∈ PR(F) iff S is a ⊆-maximal admissible set;

• S ∈ ST(F) iff S is a conflict-free set that attacks each a ∈ A \ S;

• S ∈ SST(F) iff S ∈ CO(F) and there is no S2 ∈ CO(F) s.t. S⊕ ⊂ S⊕2 ;

• S ∈ STG(F) iff S ∈ CF(F) and there is no S2 ∈ CF(F) s.t. S⊕ ⊂ S⊕2 ;

• S ∈ ID(F) iff S ∈ ADM(F), S ⊆ ∩PR(F), and there is no S2 ⊆ ∩PR(F) such that S2 ∈ ADM(F) and
S ⊂ S2.

CO, PR, ST, SST, STG and ID stand (respectively) for the complete, preferred, stable [2], semi-stable [3],
stage [4] and ideal [5] semantics. We refer the interested reader to [6] for more details about these semantics.

For σ ∈ {CO,PR,ST,SST,STG, ID} a semantics, an argument a ∈ A is credulously (respectively skeptically)
accepted in F = 〈A,R〉 with respect to σ iff a ∈ S for some (respectively each) S ∈ σ(F).

Let us recall that, for any AF F , |ID(F)| = 1, which means that an argument is credulously accepted if and
only if it is skeptically accepted. For σ ∈ {CO,PR,SST,STG}, |σ(F)| ≥ 1 for any AF F . Only in the case of the
stable semantics, there are AFs F such that ST(F) = ∅. In this situation, every argument is skeptically accepted
(but none is credulously accepted).

∗Adapted from last edition’s version by Stefano Bistarelli, Lars Kotthoff, Theofrastos Mantadelis, Francesco Santini and Carlo
Taticchi: https://www.iccma2019.dmi.unipg.it/res/SolverRequirements.pdf

1

2 Assumption-based Argumentation

Now, let us introduce a particular framework for structured argumentation, namely Assumption-based Argumen-
tation (ABA) [7]. ABA is one of the most popular structured argumentation frameworks, with applications in
various domains, like e.g. information seeking and inquiry dialogues [8], decision making in a medical context [9],
or explanation of automated decisions [10]. An ABA framework is a tuple F = 〈L,R,A, 〉, where:

• L is a set of symbols called the language;

• R is a set of rules of the form x0 ← x1, . . . , xn, with xi ∈ L for i ∈ {0, . . . , n} and n ≥ 0;

• A ⊆ L is a non-empty set of particular symbols called assumptions;

• : A→ L is a total mapping that expresses a notion of contrariness.

In a rule x0 ← x1, . . . , xn, the left-hand part (x0) is called the head of the rule, while the right-hand part (x1, . . . , xn)
is called the body. A rule x0 ← with no body can be interpreted as x0 ← >.

A deduction for x ∈ L supported by XL ⊆ L and XR ⊆ R is a (finite) tree rooted in x, with nodes labeled by
symbols in L or >, such that each leaf is either a symbol in XL or >, and for each internal node with label x′, its
children are the elements x1, . . . , xn of the body of some rule x′ ← x1, . . . , xn ∈ XR. An argument for the claim
x ∈ L supported by XA ⊆ A (denoted by XA ` x) is a deduction for x supported by XA (and some XR ⊆ R). An
argument A1 ` x1 attacks an argument A2 ` x2 iff x1 is the contrary of some assumption in A2.

Finally, we introduce the notion of flat ABA framework. This is a particular subclass of ABA frameworks
F = 〈L,R,A, 〉, such that there is no rule x0 ← x1, . . . , xn ∈ R with x0 ∈ A, i.e. there is no assumption as the
head of a rule.

Now, there are two equivalent ways of reasoning with an ABA framework: either the status of arguments is
evaluated, or the status of assumptions. Here, we choose to consider the latter.

Definition 2. Given F = 〈L,R,A, 〉 a flat ABA framework, a set of assumptions A1 ⊆ A attacks a set of
assumptions A2 ⊆ A iff an argument supported by a subset of A1 attacks an argument supported by a subset of A2.
A set of assumptions defends an assumption a if it attacks each set of assumptions that attacks a. Then, given a
set of assumptions XA ⊆ A,

• XA ∈ CF(F) iff it does not attack itself;

• XA ∈ ADM(F) iff XA ∈ CF(F) and XA defends all its elements;

• XA ∈ CO(F) iff XA ∈ ADM(F) and ∀a ∈ A that is defended by XA, a ∈ XA;

• XA ∈ PR(F) iff XA is a ⊆-maximal admissible set;

• S ∈ ST(F) iff XA ∈ CF(F) and XA attacks each a ∈ A \XA.

3 Computational Problems

In the following Sections 3.1, 3.2 and 3.3, we describe (sub-)tracks where the solvers should provide exact result in
all cases. On the contrary, Section 3.4 describes the introduction of the first track for approximate algorithms at
ICCMA.

3.1 Static Abstract Argumentation

Let σ ∈ {CO,PR,ST,SST,STG} be a semantics. For each one, we define a sub-track made of four computational
problems:

• CE-σ: Given an AF F = 〈A,R〉, give the number of σ-extensions of F .

• SE-σ: Given an AF F = 〈A,R〉, give one σ-extension of F .

• DC-σ: Given an AF F = 〈A,R〉 and a ∈ A an argument, is a credulously accepted in F?

• DS-σ: Given an AF F = 〈A,R〉 and a ∈ A an argument, is a skeptically accepted in F?

2

These problems can be understood as: SE: “give some extension”; CE: “count the extensions”; DC: “decide
credulous acceptance”; DS: “decide skeptical acceptance”.

The track also includes a sixth sub-track for the ideal semantics. We only consider SE-ID and DS-ID, since
CE-ID is trivial (the answer is always 1), and DC-ID coincides with DS-ID.

3.2 Dynamic Abstract Argumentation

Similarly to the previous edition of the competition, ICCMA’21 includes a track dedicated to argumentation dy-
namics, i.e. we expect solvers that are able to solve, sequentially, a given task each time an AF is updated. However,
we propose some changes to the track, that are described here. The first one is the reduction of the set of semantics,
since (similarly to classical track), we do not consider the grounded semantics, that was part of the previous editions.
So, in this track we have three sub-tracks, corresponding to σ ∈ {CO,PR,ST}. For each of these sub-tracks, the
reasoning tasks are, as previously, CE, SE, DCand DS. Now, we describe the two main differences:

• the possible kinds of updates were only only the addition/deletion of a single attack: we also consider the
addition of an argument (with a set of incident attacks) and the deletion of an argument (as well as all the
incident attacks);

• the solvers were reading the full set of updates in a text file, before any computation: now, the solvers will
wait for the updates, that will be provided on the standard input.

“Complex” additions and deletions can be decomposed into simpler updates (for instance, adding an argument with
incident attacks can be simulated with the addition of a disconnected argument, and then the sequential addition
of the attacks), so any solvers that participated to the previous edition can participate again, with minor updates
of the algorithms. However, we hope that the modification of the track will lead to the development of efficient
algorithms for such complex updates, that are more relevant for applications of argumentation. Similarly, it seems
more realistic e.g. in a debate that an agent learns the updates one at a time, rather than all of them at once before
any calculation. This is why we replace the description of the updates in a text file by an online process. We give
more details about the input of dynamic solvers in Section 4.4.

3.3 Assumption-based Argumentation

For the first time at ICCMA, we propose a track dedicated to structured argumentation. The track is divided
into three sub-tracks, corresponding to the complete, preferred and stable semantics of flat ABA frameworks.
Similarly to abstract argumentation, we consider the four computational problems introduced previously, i.e. for
σ ∈ {CO,PR,ST}, the problems are CE-σ, SE-σ, DC-σ and DS-σ, corresponding respectively to counting
the number of extensions, computing one extension, and determining the credulous or skeptical acceptance of an
assumption.

3.4 Approximate Algorithms

Finally, for the first time at ICCMA, we separate exact algorithms from approximate algorithms. In each of the
track described previously (Sections 3.1, 3.2 and 3.3), we expect exact algorithms, i.e. algorithms that always
provide a correct answer (or do not provide an answer at all if the time required for computing the solution is longer
than the runtime limit). This means that any mistake leads to the exclusion of a solver from the sub-track where
it is not correct.

On the contrary, we will authorize the participation of approximate solvers in a dedicated track. The main
interest of an approximate algorithm is the rapidity of the answer. Thus the approximate solvers will be given
less time than exact algorithms. Also, wrong answers will not lead to the exclusion of the solver, but will only
cause a decrease of the solver score. Since the issue of evaluating approximate algorithms is new to ICCMA,
we have chosen to restrict this track to only two problems for each sub-track: DS-σ and DC-σ, where σ ∈
{CO,PR,ST,SST,STG}, and one problem DS-σ for σ = ID.

4 Input File Formats

Each benchmark for abstract argumentation is provided in two different file formats: trivial graph format (tgf) and
ASPARTIX format (apx), described respectively in Sections 4.1 and 4.2. For the ABA frameworks benchmarks, we
propose the ABASPARTIX format (abapx), inspired by the ASPARTIX format, described in Section 4.3.

3

For the following examples, we use the AF F = 〈A,R〉 with A = {a1, a2, a3} and R = {(a1, a2), (a2, a3), (a2, a1)},
depicted at Figure 1.

a1 a2 a3

Figure 1: The AF F

4.1 Trivial Graph Format

The Trivial Graph Format describes a graph by giving a list of identified for nodes, then a list of edges, separated
by a # symbol. See https://en.wikipedia.org/wiki/Trivial_Graph_Format for more details. We give below
the content a myFile.tgf, that corresponds to the AF depicted at Figure 1.

1

2

3

#

1 2

2 3

2 1

4.2 ASPARTIX Format

The ASPARTIX format (named after the ASP-based argumentation solver ASPARTIX [11]) describes the argument
names as rules arg(name)., and attacks as rules att(name1,name2). We give below, as an example, the content
of myFile.apx, that corresponds to the AF depicted at Figure 1.

arg(a1).

arg(a2).

arg(a3).

att(a1,a2).

att(a2,a3).

att(a2,a1).

4.3 ABASPARTIX Format

Inspired by the ASPARTIX format for abstract AFs, we propose the ABASPARTIX format for ABA frameworks.
For instance, we consider the ABA framework F = 〈L,R,A, 〉 with L = {a, b, c, p, q, r, s, t}, R = {(p ← q, a),
(q ←), (r ← b, c)}, A = {a, b, c} and a = r, b = s, c = t. This example, borrowed from [7], can be represented as
the following myFile.abapx file:

rule(p,q,a).

rule(q).

rule(r,b,c).

assum(a).

assum(b).

assum(c).

cont(a,r).

cont(b,s).

cont(c,t).

For each line rule(...). in the file, the first parameter corresponds to the head of the rule, and the other (op-
tional) parameters correspond to the body. For instance, rule(p,q,a). represents the rule p← q, a, and rule(q).

corresponds to q ←. Assumptions and the contrariness mapping are represented, respectively, by assum(...). and
cont(...). lines. Finally, the language does not need to be explicitly given, since it is simply the set of all the
symbols that appear in the rules and assumptions.

4

4.4 Dynamic Track

For the dynamic track, the AF can be given as a .tgf or .apx file. The associated set of updates must then be
given as a .tgfm or .apxm file. These formats have been defined at ICCMA’19 for updates that are only additions
and deletions of attacks. Since we introduce new kinds of updates (addition of an argument with a set of attacks,
and deletion of an argument with all the incident attacks), we extend the formats accordingly.

A .tgfm file is a succession of lines, each corresponding to one update:

• +1 3 means that an attack from argument 1 to argument 3 must be added;

• -2 1 means that the attack from argument 2 to argument 1 must be deleted;

• +4:4 1:2 4 means that an argument 4 must be added, as well as the attacks from 4 to 1, and from 2 to 4;

• -3 means that the argument 3 must be removed, as well as all the attacks where this argument appears.

Similarly, we extend the .apxm format. For instance:

• +att(a1,a3). for adding an attack from a1 to a3

• -att(a2,a1). for deleting an attack from a2 to a1

• +arg(a4):att(a4,a1):att(a2,a4). for adding an argument a4 and attacks from a4 to a1 and from a2 to a4.

• -arg(a3). for removing argument a3 (as well as all the indident attacks).

A .tgfm file or an .apxm containing these lines correspond to updates of the AF F (Figure 1) as follows:

a1 a2 a3

(a) Adding an attack (a1, a3)

a1 a2 a3

(b) Deleting an attack (a2, a1)

a1 a2 a3

a4

(c) Adding an argument a4

a1 a2

a4

(d) Deleting the argument a3

Figure 2: Successive Updates of the AF F

Let us mention that the .tgfm or .apxm file will not be provided to the solvers. Indeed, this year, the updates
will be provided one by one, on the solver standard input. This means, for instance, that the solver will first solve
the problem for the AF F from Figure 1, and print the answer on the standard output. After this first computation,
an update will be provided on the standard input, and the solver will have to print on the standard input the result
for the AF given at Figure 2a. Only after that, the second update will be provided, and so on. After the last
update, we will provide on the standard input an empty line, that indicates the end of the computations.

The solver wrapper we will use to implement this behavior is freely available at https://github.com/crillab/
iccma-dynamics-wrapper. Please contact us if you experiment some issues with this software, and do not hesitate
to “watch” it on github to be informed when updates are performed.

5 Output Format

The following subsections describe the format that the output need to follow, for both static tracks (i.e. static
abstract argumentation, assumption-based argumentation, and approximate algorithms) in Section 5.1, and the
dynamic track in Section 5.2.

5

5.1 Static Tracks

For all the tracks except the dynamic argumentation track, solvers must write the result to standard output exactly
in the format described below.

• DC-σ and DS-σ, for σ ∈ {CO,PR,ST,SST,STG, ID}. The output must be either

YES

if the queried argument is (respectively) credulously or skeptically accepted in the given AF under σ, or if the
queried assumption is (respectively) credulously or skeptically accepted in the given ABA framework under
σ, or

NO

otherwise.

• SE-σ, for σ ∈ {CO,PR,ST,SST,STG, ID}. The output must be of the form

[a1,a2,a3]

meaning that {a1, a2, a3} is a σ-extension of the given AF or ABA framework. a1, a2 and a3 are arguments in
the former case, and assumptions in the latter case. If σ = ST, there may be benchmarks that do not possess
any extension. In that case, the output must be

NO

• CE-σ, for σ ∈ {CO,PR,ST,SST,STG}. The output must be of the form

k

where k ∈ N is the number of σ-extensions of the given AF or ABA framework.

5.2 Dynamic Track

For the dynamic track, we choose to simplify the output compared to the previous edition of the competition.
The solvers must output the answer for the given problem on the standard output, then wait for the next update
(provided on the standard input). Concretely, the first line on the standard output represents the answer for the
initial AF, and then, for i > 0, the (i + 1)th line corresponds to the answer for the AF obtained after sequentially
applyling the first i updates. Each answer must follow the rules given in Section 5.1.

• DS-σ and DC-σ, for σ ∈ {CO,PR,ST}, the solver output must be a succession of lines containing either
YES or NO.

• CE-σ, for σ ∈ {CO,PR,ST}, the solver output must be a succession of lines containing a number.

• SE-σ, for σ ∈ {CO,PR,ST}, the solver output must be a succession of lines containing an extension.

6 Solver Interface

The single executable of a solver should be runnable from a command line and must provide the following behavior
(let solver be the filename of the executable).

• solver (without any parameters)
Prints author(s) and version information of the solver on standard output. Example:

user$ solver

MySolver v1.0

John Doe, john.doe@example.com

user$ _

6

• solver --formats

Prints the supported formats of the solver in the form

[supportedFormat1,...,supportedFormatN]

The possible values for each supported format are tgf, apx, abapx Example:

user$ solver --formats

[tgf,apx]

user$ _

• solver --problems

Prints the supported computational problems in the form

[supportedProblem1,...,supportedProblemN]

The possible values are DS-CO, DS-PR, DS-ST, DS-SST, DS-STG, DS-ID, DC-CO, DC-PR, DC-ST,
DC-SST, DC-STG, SE-CO, SE-PR, SE-ST, SE-SST, SE-STG, SE-ID, CE-CO, CE-PR, CE-ST,
CE-SST, CE-STG, as well as their variants for the dynamic track DS-CO-D, DS-PR-D, DS-ST-D,
DC-CO-D, DC-PR-D, DC-ST-D, SE-CO-D, SE-PR-D, SE-ST-D, CE-CO-D, CE-PR-D, CE-ST-D.
Example:

user$ solver --problems

[DC-CO,DS-CO,CE,CO-SE-CO]

user$ _

• solver -p <task> -f <file> -fo <fileformat> [-a <additional_parameter>]

Solves the given problem on the AF or ABA framework specified by the given file, represented in the given file
format, and prints out the result. More specifically, the task can be any of the supported problems described
previously, and the file format can be any of the supported format. If the file format is tgf or apx, then the
file must describe an AF; if it is abapx, then the file must describe an ABA framework. Finally, the additional
parameter is required for DC and DS problems: it represents the argument or assumption that is queried for
acceptance. Here are some examples:

– solver -p DC-<semantics> -f <file> -fo <fileformat> -a <additional_parameter>

Solves credulous decision problem for the given AF or ABA framework, with respect to the argument or
assumption given as additional parameter. Example:

user$ solver -p DC-CO -f myFile.apx -fo apx -a a1

YES

user$ _

– solver -p DS-<semantics> -f <file> -fo <fileformat> -a <additional_parameter>

Solves skeptical decision problem for the given AF or ABA framework, with respect to the argument or
assumption given as additional parameter. Example:

user$ solver -p DS-ST -f myFile.tgf -fo tfg -a a2

NO

user$ _

– solver -p CE-<semantics> -f <file> -fo <fileformat>

Solves counting problem for the given AF or ABA framework. Example:

user$ solver -p CE-PR -f myFile.abapx -fo abapx

4

user$ _

– solver -p SE-<semantics> -f <file> -fo <fileformat>

Returns one extension of the given AF or ABA framework. Example:

7

user$ solver -p SE-ID -f myFile.tgf -fo tfg

[a1,a3,a4]

user$ _

Contrary to the previous edition, the dynamic version of the problems does not require an additional parameter
to indicate the modification file. Indeed, the modifications will not be given together, in a text file, before any
computation, but one at a time on the standard input. In the following examples, we suppose that there are
three updates. This means that there must be four lines printed on the standard output: one for the initial
AF, and one after each update. An empty line is sent on the solver standard input to indicate the end of the
updates.

– solver -p DC-<semantics>-D -f <file> -fo <fileformat> -a <additional_parameter>

Solves dynamically the credulous decision problem for the given AF, with respect to the argument
additional parameter. Example:

user$ solver -p DC-CO-D -f myFile.apx -fo apx -a a1

YES

NO

NO

YES

user$ _

– solver -p DS-<semantics>-D -f <file> -fo <fileformat> -a <additional_parameter>

Solves dynamically the skeptical decision problem for the given AF, with respect to the argument given
as additional parameter. Example:

user$ solver -p DS-ST-D -f myFile.tgf -fo tfg -a a2

NO

NO

YES

YES

user$ _

– solver -p CE-<semantics>-D -f <file> -fo <fileformat>

Solves dynamically the counting problem for the given AF. Example:

user$ solver -p CE-PR-D -f myFile.abapx -fo abapx

4

6

2

7

user$ _

– solver -p SE-<semantics>-D -f <file> -fo <fileformat>

Returns dynamically one extension of the given AF. Example:

user$ solver -p SE-CO-D -f myFile.tgf -fo tfg

[a1,a3,a4]

[a1,a2,a4]

[a1,a3]

[a3,a4]

user$ _

Each solver has to support at least one file format, and one problem. It is ensure that each solver is only called
with file formats and problems it supports. The behavior of a solver when called with unsupported parameters is
undefined.

7 Submission format

Solvers must be submitted as a ZIP archive containing their source code and a build.sh shell script producing the
solver binary from the source code (if needed). A README file must be present, explaining the material required

8

by the solver (e.g. libraries), how to launch it against a problem, and other information that may be useful to
build/execute your solver.

The experiments are intended to be held on machines equipped with Intel Xeon E5-2637 v4 CPUs and 128GB
of RAM. These machines are operated by 64bits CentOS Linux release 7.3.1611 (Linux kernel version 3.10).

References

[1] Lagniez JM, Lonca E, Mailly JG, Rossit J. Introducing the Fourth International Competition on Computational
Models of Argumentation. In: Proc. of SAFA’20;. p. 80–85.

[2] Dung PM. On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic
Programming and n-Person Games. Artif Intell. 1995;77(2):321–358.

[3] Caminada M, Carnielli WA, Dunne PE. Semi-stable semantics. J Log Comput. 2012;22(5):1207–1254.

[4] Verheij B. Two approaches to dialectical argumentation: admissible sets and argumentation stages. In: Proc.of
NAIC’96; 1996. p. 357–368.

[5] Dung PM, Mancarella P, Toni F. Computing ideal sceptical argumentation. Artif Intell. 2007;171(10-15):642–
674.

[6] Baroni P, Caminada M, Giacomin M. Abstract Argumentation Frameworks and Their Semantics. In: Baroni P,
Gabbay D, Giacomin M, van der Torre L, editors. Handbook of Formal Argumentation. College Publications;
2018. p. 159–236.

[7] Toni F. A tutorial on assumption-based argumentation. Argument & Computation. 2014;5(1):89–117.

[8] Fan X, Toni F. Agent Strategies for ABA-based Information-seeking and Inquiry Dialogues. In: Proc. of
ECAI’12; 2012. p. 324–329.

[9] Fan X, Craven R, Singer R, Toni F, Williams M. Assumption-Based Argumentation for Decision-Making with
Preferences: A Medical Case Study. In: Proc. of CLIMA XIV; 2013. p. 374–390.

[10] Zhong Q, Fan X, Toni F, Luo X. Explaining Best Decisions via Argumentation. In: Proc. of ECSI’14; 2014.
p. 224–237.

[11] Egly U, Gaggl SA, Woltran S. Answer-set programming encodings for argumentation frameworks. Argument
Comput. 2010;1(2):147–177.

9

