
CONARG: A CONSTRAINT-PROGRAMMING SOLVER FOR
ABSTRACT ARGUMENTATION PROBLEMS

Stefano Bistarelli, Fabio Rossi, Francesco Santini, Carlo Taticchi
Department of Mathematics and Computer Science

University of Perugia
firstname.lastname@unipg.it

ABSTRACT

ConArg is a Constraint Programming (CP) solver dedicated to the solution of problems related to
extension-based semantics in Abstract Argumentation. It exploits Gecode, an efficient C++ toolkit
for developing constraint-based systems and applications. The properties required by semantics are
encoded as constraints, and arguments are assigned to true if belonging to a valid extension for that
semantics. The search for solutions (as enumerating extensions or checking argument-acceptance)
takes advantage of well-known techniques in CP, as local consistency, different variable and value
heuristics, and a complete exploration of the solution space with branch-and-bound pruning.

Description

ConArg (Argumentation with Constraints) is a Constraint-programming tool oriented to the solution of problems re-
lated to extension-based semantics in Abstract Argumentation [9]. Since the first version of the tool [2, 6], it has been
updated with the purpose i) to solve further problems linked to weighted problems [4] and coalitions of arguments [7],
and ii) to improve its performance over classical semantics, by using a benchmark assembled with random graph-
models [3]. The main design principles consists in ensuring correctness of solutions and solving weighted extensions
of Abstract Argumentation.

The first version of ConArg [6] was based on the Java Constraint Programming solver1 (JaCoP), a Java library that
provides a Finite Domain Constraint Programming paradigm [11]. The current version of ConArg exploits Gecode
6.2.02, an efficient C++ toolkit for developing constraint-based systems and applications. ConArg is now implemented
also as a C++ software library [5], which can be used in programs to compute extensions and use them in decision-
making applications, for example. ConArg and ConArgLib are among the official projects supported by Gecode.3

In [8] the authors classify the ConArg approach among “reduction-based implementations”: these methods first reduce
the problem to the target formalism (in this case, constraints), then run the solver of the target formalism, and finally
interpret the output as the solutions of the original problem; other similar approaches use Answer Set Programming or
SAT solvers.

In ConArg, the search procedure takes advantage of classical techniques, such as local consistency, different heuristics
for trying to assign values to variables, and complete search-tree with branch-and-bound. Models in Gecode are
implemented using spaces. A space is home to variables, propagators (implementations of constraints), and branchers
(implementations of branching, describing shape of the search tree).

An array of Boolean variables args[] (i.e., instances of the class BoolVar) represents the whole set of arguments
Args ; Boolean variables can only take 0 or 1 values. An array of Boolean variables can be created with BoolVarArray
args[](space, |Args |, 0, 1), where space is the associated search-space. For each modelled constraint there is post
function (rel in the following examples) that creates propagators implementing the constraint in the home space, passed

1http://www.jacop.eu.
2http://www.gecode.org.
3Gecode projects: https://www.gecode.org/projects.html.

as argument. As an example, constraints for modelling conflict-free-sets are based on the first order logic formula
∀a, b ∈ Aarg s.t. R(a, b), then a ⇒ ¬b (>> is the implication operator in Gecode): rel(space, args[i] >> !args[j]).
For a more detailed description of constraint encoding, we point the interested reader to [5].

ConArg was submitted to the first International Competition on Computational Models of Argumentation (ICCMA
2015) [12] and ICCMA 2017 [10]. It was the reference solver in ICCMA 2019, used to check the correctness of
solutions provided by participants [1].

The version of ConArg we submitted to ICCMA 2021 participate in the following classical tracks:

• CE: counting the number of extensions of one complete, preferred, stable, semi-stable and stage semantics.
• SE: returning one extension given one complete, preferred, stable, semi-stable, ideal and stage extensions

semantics;
• DC: checking the credulous acceptance for the complete, preferred, stable, semi-stable and stage semantics;
• DS: checking the sceptical acceptance for the complete, preferred, stable, semi-stable, ideal and stage exten-

sions semantics.

From the home-page of ConArg4, it is possible to download the executable of the solver, compiled for Linux i386 and
x64 machines. Moreover, still at the same Website, we offer a visual interface where to interactively draw abstract
frameworks (arguments and attacks as directed edges), and use ConArg as the underlying solver for the requested
problem. Finally, the version used as the reference solver in ICCMA 2019 can be pulled as a Docker image.5

References

[1] S. Bistarelli, L. Kotthoff, F. Santini, and C. Taticchi. A first overview of iccma’19. In Proceedings of the
Workshop on Advances In Argumentation In Artificial Intelligence 2020 co-located with the 19th International
Conference of the Italian Association for Artificial Intelligence (AIxIA 2020), volume 2777 of CEUR Workshop
Proceedings, pages 90–102. CEUR-WS.org, 2020.

[2] S. Bistarelli, D. Pirolandi, and F. Santini. Solving weighted argumentation frameworks with soft constraints.
In ERCIM International Workshop on Constraint Solving and Constraint Logic Programming (CSCLP), volume
6384 of LNCS, pages 1–17, 2009.

[3] S. Bistarelli, F. Rossi, and F. Santini. Not only size, but also shape counts: abstract argumentation solvers are
benchmark-sensitive. J. Log. Comput., 28(1):85–117, 2018.

[4] S. Bistarelli, F. Rossi, and F. Santini. A novel weighted defence and its relaxation in abstract argumentation. Int.
J. Approx. Reason., 92:66–86, 2018.

[5] S. Bistarelli, F. Rossi, and F. Santini. Conarglib: an argumentation library with support to search strategies and
parallel search. Journal of Experimental & Theoretical Artificial Intelligence, 0(0):1–28, 2020.

[6] S. Bistarelli and F. Santini. Conarg: A constraint-based computational framework for argumentation systems. In
23rd IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pages 605–612. IEEE Com-
puter Society, 2011.

[7] S. Bistarelli and F. Santini. Coalitions of arguments: An approach with constraint programming. Fundam.
Inform., 124(4):383–401, 2013.

[8] F. Cerutti, S. A. Gaggl, M. Thimm, and J. P. Wallner. Foundations of implementations for formal argumentation.
In P. B. D. G. M. G. L. van der Torre, editor, Handbook on Formal Argumentation, pages 688–767. College
Publications, February 2018.

[9] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artif. Intell., 77(2):321–357, 1995.

[10] S. A. Gaggl, T. Linsbichler, M. Maratea, and S. Woltran. Design and results of the second international compe-
tition on computational models of argumentation. Artif. Intell., 279, 2020.

[11] F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming (Foundations of Artificial Intelli-
gence). Elsevier Science Inc., New York, NY, USA, 2006.

[12] M. Thimm, S. Villata, F. Cerutti, N. Oren, H. Strass, and M. Vallati. Summary report of the first international
competition on computational models of argumentation. AI Magazine, 37(1):102, 2016.

4http://www.dmi.unipg.it/conarg/.
5A Docker image of ConArg used in ICCMA’19https://hub.docker.com/r/iccma19/conarg.

2

