

Results of the Fourth International Competition on Computational Models of Argumentation

Jean-Marie Lagniez¹, Emmanuel Lonca¹, Jean-Guy Mailly² and Julien Rossit²

1: CRIL, CNRS and Université d'Artois, Lens 2: LIPADE - Distributed Artificial Intelligence

> ICCMA@IJCAI2021 August 24th, 2021

• The competition aims at nurturing research and development of implementations for computational models of argumentation.

http://argumentationcompetition.org/

- Current steering committee: S. Gaggl (Pres.), N. Oren (Vice-Pres.), J.-G. Mailly (Secr.), F. Cerutti, M. Thimm, M. Vallati, S. Villata
- ICCMA 2015: M. Thimm and S. Villata
 - 18 solvers
- ICCMA 2017: S. Gaggl, T. Linsbichler, M. Maratea and S. Woltran
 - 16 solvers/6 benchmarks
- ICCMA 2019: S. Bistarelli, F. Santini, L. Kotthoff, T. Mantadelis and C. Taticchi
 - 9 solvers/2 benchmarks
- ICCMA 2021: J.-M. Lagniez, E. Lonca, J.-G. Mailly and J. Rossit

Background: Abstract Argumentation

2 Competition Rules

Participants and Results

- Participants
- Results: Exact Solvers
- Results: Approximate Solvers

Université de Paris

Abstract Argumentation [Dung 95]

Argumentation Framework (AF) and Extension Semantics

F = (A, R) where A is a set of arguments and $R \subseteq A \times A$ represents attacks between arguments. $S \subseteq A$ is

- conflict-free (cf) if there is no $a, b \in S$ s.t. $(a, b) \in R$
- admissible (ad) if $S \in cf(F)$ and S defends all its elements
- stable (stb) if $S \in cf(F)$ and S attacks each argument in $A \setminus S$
- complete (co) if $S \in ad(F)$ and S doesn't defend any argument in $A \setminus S$
- preferred (pr) if S is \subseteq -maximal in ad(F)
- semi-stable (sst) if $S \in co(F)$ and S is range-maximal in co(F)
- stage (stg) if if $S \in cf(F)$ and S is range-maximal in cf(F)
- *ideal* (id) if $S \in ad(F)$ s.t. $\forall S' \in pr(F)$, $S \subseteq S'$, and S is \subseteq -maximal among those sets

- **CE**- σ : Given an AF *F*, how many σ -extensions has *F*?
- SE- σ : Given an AF F, provide one σ -extension of F (if it exists).
- **DS**- σ : Given an AF F and an argument a, is a in each σ -extension of F?
- **DC**- σ : Given an AF F and an argument a, is a in some σ -extension of F?

Background: Abstract Argumentation

2 Competition Rules

Participants and Results

- Participants
- Results: Exact Solvers
- Results: Approximate Solvers

- Classical track: exact algorithms
- New track: approximate algorithms
- In each track, one sub-track for each semantics
- In each sub-track, several reasoning tasks

Université Classical Track: Exact Algorithms

- Semantics under consideration: $\sigma \in {co, pr, stb, sst, stg, id}$
 - we choose to remove the grounded semantics (not challenging enough)
- Tasks: Given an AF $F = \langle A, R \rangle$
 - **CE**- σ : give the number of σ -extensions of F
 - SE- σ : give one σ -extension of F
 - **DC**- σ : for $a \in A$ an argument, is a credulously accepted in F?
 - DS-σ: a ∈ A an argument, is a skeptically accepted in F?
- Four problems for each subtrack except $\sigma = id$ (CE-id = 1, and DC-id = DS-id)

Université New Track: Approximate Algorithms

- Semantics under consideration: $\sigma \in {co, pr, stb, sst, stg, id}$
- Tasks: Given an AF $F = \langle A, R \rangle$
 - DC-σ: for a ∈ A an argument, is a credulously accepted in F?
 - DS-σ: a ∈ A an argument, is a skeptically accepted in F?
- Two problems for each subtrack except $\sigma = id$ (DC-id = DS-id)

- Input and output from 2019 edition
 - · New problem CE: simply print the number of extensions
- Environment:
 - Intel Xeon E5-2637 v4 CPU/128GB RAM
 - Time limit: 600s for the "exact" track, 60s for the "approximate" track
 - Memory limit: 128GB

- One ranking for each sub-track
 - six rankings for the "exact" track
 - six rankings for the "approximate" track
 - · To be ranked, a solver must participate to the full sub-track
 - · No requirement to participate to all the (sub-)tracks
- Scoring: "exact" track
 - · Any wrong result: exclusion from the sub-track
 - · Correct answer in the runtime limit: 1 point
 - Timeout or non-parsable output: 0 point
 - Tie-break: cumulated runtime over the instances correctly solved
- Scoring: "approximate" track
 - · Correct answer in the runtime limit: 1 point
 - · Timeout, non-parsable output or wrong result: 0 point
 - · Tie-break: cumulated runtime over the instances correctly solved
- Score(Solver, Task) = $\sum_{i \in Task} Score(Solver, i)$
- Score(Solver, Subtrack) = $\sum_{Task \in Subtrack} Score(Solver, Task)$

ICCMA 2019 instances

- 165 hardest instances from ICCMA 2019
- Goal: check the evolution of solvers during two years

New instances

- 422 new instances:
 - Generate a (meta-)graph G following a classical generation pattern (e.g. Erdos-Renyi, Barabasi-Albert, . . .)
 - For each node n_i in this graph, generate a new graph F_i
 - For each edge (n_1, n_2) in G, pick some arguments a_1 in F_1 and a_2 in F_2 , and add an edge (a_1, a_2)
- Intuition: create graphs with "communities of arguments"

Query argument selection (DS, DC)

- For each AF, one argument is randomly chosen
- The same argument is used for all the DS and DC queries on the same AF

Background: Abstract Argumentation

2 Competition Rules

Participants and Results

- Participants
- Results: Exact Solvers
- Results: Approximate Solvers

Exact solvers:

- A-Folio DPDB (Fichte, Hecher, Gorczyca and Dewoprabowo)
- ASPARTIX-V21 (Dvorák, König, Wallner and Woltran)
- ConArg (Bistarelli, Rossi, Santini and Taticchi)
- FUDGE (Thimm, Cerutti, Vallati)
- MatrixX (Heinrich)
- μ -toksia (Niskanen and Järvisalo)
- PYGLAF (Alviano)

Approximate solvers:

- AFGCN (Malmqvist)
- HARPER++ (Thimm)

Exact solvers:

- A-Folio DPDB (Fichte, Hecher, Gorczyca and Dewoprabowo)
- ASPARTIX-V21 (Dvorák, König, Wallner and Woltran)
- ConArg (Bistarelli, Rossi, Santini and Taticchi)
- FUDGE (Thimm, Cerutti, Vallati)
- MatrixX (Heinrich)
- *µ***-toksia** (Niskanen and Järvisalo)
- **PYGLAF** (Alviano)

Approximate solvers:

- AFGCN (Malmqvist)
- HARPER++ (Thimm)
- 5 new solvers and 4 updated solvers from previous ICCMA

Université Exact Solvers - Complete Subtrack

Rank	Solver	Score
1	A-Folio DPDB	1838
2	PYGLAF	1835
3	μ -toksia	1803
4	ASPARTIX-V21	1787
5	FUDGE	1695
6	MatrixX	759
7	ConArg	428

Université Exact Solvers - Preferred Subtrack

Rank	Solver	Score
1	PYGLAF	1299
2	μ -toksia	1210
3	FUDGE	1190
4	ASPARTIX-V21	1052
5	ConArg	429

Université Exact Solvers - Semi-Stable Subtrack

Rank	Solver	Score
1	PYGLAF	1515
2	μ -toksia	1103
3	ASPARTIX-V21	744
4	ConArg	428

Université Exact Solvers - Stable Subtrack

Rank	Solver	Score
1	A-Folio-DPDB	1862
2	PYGLAF	1743
3	FUDGE	1585
4	μ -toksia	1441
5	ASPARTIX-V21	1429
6	ConArg	429
7	MatrixX	259

Université Exact Solvers - Stage Subtrack

Rank	Solver	Score
1	ASPARTIX-V21	879
2	μ -toksia	788
3	ConArg	425

Université Exact Solvers - Stage Subtrack

Rank	Solver	Score
1	ASPARTIX-V21	879
2	μ -toksia	788
3	ConArg	425

• PYGLAF was removed from this track because of incorrect results on CE-STG

Université Exact Solvers - Ideal Subtrack

Rank	Solver	Score
1	FUDGE	492
2	ASPARTIX-V21	306
3	PYGLAF	238
4	μ -toksia	216
5	ConArg	214

• μ -toksia was submitted in two versions: single thread and multi-thread (four threads with different configurations of the underlying SAT solver)

	Complete			Semi-Stable			Stage	
Rank	Solver	Score	Rank	Solver	Score	Rank	Solver	Score
-	μ -toksia-parallel	1866	2	μ -toksia	1103	2	μ -toksia	788
1	A-Folio DPDB	1838		μ -toksia-parallel	1008		μ -toksia-parallel	627
3	μ -toksia	1803		Stable			Ideal	
	Preferred		Rank	Solver	Score	Rank	Solver	Score
Rank	Solver	Score	4	μ -toksia	1441	2	ASPARTIX-V21	306
2	μ -toksia	1210		μ -toksia-parallel	1366		μ -toksia-parallel	300
	μ -toksia-parallel	1195				4	μ -toksia	216

• Multi-threading does not seem have a significant impact on a global level

• A more fine grained analysis of the results might provide a better insight of the question

Rank	Solver	Score
1	HARPER++	747
2	AFGCN	668

Rank	Solver	Score
1	AFGCN	567
2	HARPER++	438

Rank	Solver	Score
1	AFGCN	522
2	HARPER++	351

Rank	Solver	Score
1	AFGCN	392
2	HARPER++	349

Rank	Solver	Score
1	AFGCN	637
2	HARPER++	457

Rank	Solver	Score	Cumulated Runtime
1	HARPER++	108	9.848397
2	AFGCN	108	470.655630

Université Some Thoughts on the Results

- Breaking open doors: no scoring system is perfect, and other measures would provide other results
- The best solver may differ, depending on applications, constraints,...
 - *E.g.*, for approximate reasoning, AFGCN wins when accuracy matters, but HARPER++ wins when time constraints must be fulfilled
- Detailed results and their analysis will be available ASAP

Background: Abstract Argumentation

2 Competition Rules

Participants and Results

- Participants
- Results: Exact Solvers
- Results: Approximate Solvers

Subtrack	Exact Winner	Approximate Winner
Complete	A-Folio-DPDB	HARPER++
Preferred	PYGLAF	AFGCN
Semi-Stable	PYGLAF	AFGCN
Stage	ASPARTIX-V21	AFGCN
Stable	A-Folio-DPDB	AFGCN
Ideal	FUDGE	HARPER++

Subtrack	Exact Winner	Approximate Winner
Complete	A-Folio-DPDB	HARPER++
Preferred	PYGLAF	AFGCN
Semi-Stable	PYGLAF	AFGCN
Stage	ASPARTIX-V21	AFGCN
Stable	A-Folio-DPDB	AFGCN
Ideal	FUDGE	HARPER++

• Exact algorithms: 3 subtracks won by updated solvers from previous ICCMA, and 3 subtracks won by new solvers

Subtrack	Exact Winner	Approximate Winner
Complete	A-Folio-DPDB	HARPER++
Preferred	PYGLAF	AFGCN
Semi-Stable	PYGLAF	AFGCN
Stage	ASPARTIX-V21	AFGCN
Stable	A-Folio-DPDB	AFGCN
Ideal	FUDGE	HARPER++

- Exact algorithms: 3 subtracks won by updated solvers from previous ICCMA, and 3 subtracks won by new solvers
- Approximate algorithm: entirely new

- Thanks and congratulations to all the participants
- Thanks to the ICCMA steering committee
- Thanks to the French Ministry of Research and the *Région Hauts de France* for funding the CRIL cluster through CPER DATA
- Ideas for the future:
 - · Revive the dynamic argumentation track
 - Structured argumentation
 - New metrics for approximate solvers (CE-σ, SE-σ)
 - Parallel computing
- Detailed results and benchmark descriptions will be available soon at http://argumentationcompetition.org/2021/index.html
- See http://argumentationcompetition.org or https://twitter.com/argcompetition for information on the future of ICCMA